
 

C3D Toolkit
incl. C3D Modeler, C3D Solver, C3D Converter

Developer Manual

2016



Сontent
INTRODUCTION..........................................................................................................................................6

General Information....................................................................................................................................6
Functionality................................................................................................................................................6
Structure and Distinctive Features...............................................................................................................6
Theoretical Foundations..............................................................................................................................7
Package........................................................................................................................................................7
Test Application...........................................................................................................................................8
Development in .NET Environment............................................................................................................8

M.1. METHODS USED TO SOLIDS CONSTRUCTING.........................................................................10
M.1.1. Constructing an Elementary Solid..................................................................................................10
M.1.2. Constructing an Elementary Solid by a Given Surface...................................................................14
M.1.3. Constructing an Extrusion Solid.....................................................................................................16
M.1.4. Constructing a Revolution Solid.....................................................................................................32
M.1.5. Constructing a Swept Solid............................................................................................................46
M.1.6. Constructing a Solid by Flat Sections.............................................................................................59
M.1.7. Creating a Solid by a Specified Set of Faces..................................................................................68

М2. OPERATIONS ON SOLIDS................................................................................................................69
M.2.1. Boolean Operation on Solids..........................................................................................................69
M.2.2. Boolean Operation on Non-Closed Solids......................................................................................75
M.2.3. Boolean Operation on Extrusion Solid...........................................................................................78
M.2.4. Boolean Operation on Revolution Solid.........................................................................................84
M.2.5. Boolean Operation on Swept Solid.................................................................................................89
M.2.6. Boolean Operation with a Solid Constructed on Base of Flat Sections..........................................92
M.2.7. Cutting a Solid by a Surface...........................................................................................................96
M.2.8. Cutting a Solid by a Flat Contour...................................................................................................99
M.2.9. Constructing a Symmetrical Solid................................................................................................102
M.2.10. Rounding-off Solid Edges..........................................................................................................104
M.2.11. Rounding-off Edges of the Solid Using Variable Radius............................................................117
M.2.12. Constructing a Solid with Edge Chamfers..................................................................................124
M.2.13. Constructing a Thin-Wall Solid..................................................................................................130
M.2.14. Constructing a Thin-Wall Solid with Various Wall Thickness....................................................134
M.2.15. Constructing Solids by Thickening the Surface..........................................................................136
M.2.16. Constructing a Mirror Solid........................................................................................................137
M.2.17. Boolean Operation on Solids and Set of Solids..........................................................................139
M.2.18. Merging a Set of Solids..............................................................................................................143
M.2.19. Divide a Solid to Disconnected Parts.........................................................................................145
M.2.20. Separation of Disconnected Parts...............................................................................................147
M.2.21. Splitting Solid Faces...................................................................................................................148
M.2.22. Constructing a Hole, Pocket or Slot in a Solid...........................................................................150
M.2.23. Constructing a Solid with an Enforcement Rib..........................................................................154
M.2.24. Sloping Solid Faces....................................................................................................................156
M.2.25. Multiplication of Solids..............................................................................................................158

O.1. ELEMENTARY OBJECTS...............................................................................................................160
O.1.1. MbVector3D Vector in Three-Dimensional Space........................................................................160
O.1.2. MbCartPoint3D Radius Vector of Point in 3D Space....................................................................160
O.1.3. MbHomogenius3D Homogenius Vector in Three-Dimensional Space..........................................160
O.1.4. MbPlacement3D Local Coordinate System..................................................................................161
O.1.5. MbMatrix3D Extended Matrix in Three-Dimensional Space........................................................162
O.1.6. MbCube Bounding Box in Three-Dimensional Space..................................................................163
O.1.7. MbRect1D Univariate Dimension.................................................................................................163

2



O.1.8. MbVector Vector in Two-Dimensional Space...............................................................................164
O.1.9. MbDirection Normalized Vector in Two-Dimensional Space.......................................................164
O.1.10. MbCartPoint Point Radius Vector in Two-Dimensional Space....................................................164
O.1.11. MbHomogenius Homogenios Vector in Two-Dimensional Space...............................................164
O.1.12. MbPlacement Local Coordinate System.....................................................................................165
O.1.13. MbMatrix Extended Matrix in Two-Dimensional Space.............................................................165
O.1.14. MbRect Bounding Rectangle in Two-Dimensional Space...........................................................166

O.2. GEOMETRICAL OBJECTS.............................................................................................................168
O.2.1. MbRefItem Reference Counter.....................................................................................................168
O.2.2. MbSpaceItem Three-Dimensional Geometrical Object.................................................................169
O.2.3. MbTopItem Topological Object....................................................................................................170
O.2.4. MbPlaneItem Two-Dimensional Geometrical Object....................................................................172

O.3. TWO-DIMENSIONAL CURVES......................................................................................................174
O.3.1. MbCurve Two-Dimensional Curve...............................................................................................174
O.3.2. MbLine Two-Dimensional Straight Line......................................................................................175
O.3.3. MbLineSegment Two-Dimensional Straight Line Segment..........................................................176
O.3.4. MbArc Two-Dimensional Elliptical Arc.......................................................................................176
O.3.5. MbPolyline Two-Dimensional Polyline........................................................................................177
O.3.6. MbNurbs Two-Dimensional NURВS-Curve.................................................................................178
O.3.7. MbHermit Two-Dimensional Hermite Curve................................................................................179
O.3.8. MbBezier Two-Dimensional Bezier Composite Curve.................................................................180
O.3.9. MbCubicSpline Two-Dimensional Cubic Spline..........................................................................181
O.3.10. MbTrimmedCurve Two-Dimensional Truncated Curve..............................................................182
O.3.11. MbReparamCurve Two-Dimensional Reparameterized Curve....................................................183
O.3.12. MbOffsetCurve Two-Dimensional Equidistant Curve.................................................................184
O.3.13. MbCharCurve Two-Dimensional Character Curve.....................................................................184
O.3.14. MbCosinusoid Two-Dimensional Cosine Wave..........................................................................185
O.3.15. MbPointCurve Two-Dimensional Curve-Point...........................................................................186
O.3.16. MbProjCurve Two-Dimensional Projection Curve.....................................................................186
O.3.17. MbContour Two-Dimensional Contour.......................................................................................187

O.4. CURVES..............................................................................................................................................190
O.4.1. MbCurve3D Curve........................................................................................................................190
O.4.2. MbLine3D Straight Line...............................................................................................................192
O.4.3. MbLineSegment3D Straight Line Segment..................................................................................192
O.4.4. MbArc3D Elliptical Arc................................................................................................................192
O.4.5. MbPolyline3D Polyline.................................................................................................................193
O.4.6. MbNurbs3D NURВS-Curve.........................................................................................................194
O.4.7. MbHermit3D Hermite Curve........................................................................................................195
O.4.8. MbBezier3D Bezier Composite Curve..........................................................................................196
O.4.9. MbCubicSpline3D Cubic Spline...................................................................................................197
O.4.10. MbTrimmedCurve3D Trimmed Curve........................................................................................198
O.4.11. MbReparamCurve3D Reparametrized Curve..............................................................................199
O.4.12. MbOffsetCurve3D Equidistant Curve.........................................................................................200
O.4.13. MbCharacterCurve3D Character Curve......................................................................................200
O.4.14. MbConeSpiral Conical Spiral.....................................................................................................201
O.4.15. MbCurveSpiral Variable Radius Spiral.......................................................................................202
O.4.16. MbCrookedSpiral Spiral with Curved Planar Axis......................................................................203
O.4.17. MbBridgeCurve3D Joining Curve..............................................................................................204
O.4.18. MbContour3D Contour...............................................................................................................205
O.4.19. MbPlaneCurve Plane Curve........................................................................................................206
O.4.20. MbSurfaceCurve Curve on Surface............................................................................................207
O.4.21. MbSilhouetteCurve Silhouette Curve..........................................................................................208
O.4.22. MbContourOnSurface Contour on Surface.................................................................................209
O.4.23. MbContourOnPlane Contour on Plane........................................................................................210
O.4.24. MbSurfaceIntersectionCurve Surface Intersection Curve...........................................................211

3



O.5. SURFACES.........................................................................................................................................216
O.5.1. MbSurface Surface........................................................................................................................216
O.5.2. MbPlane Plane..............................................................................................................................218
O.5.3. MbCylinderSurface Cylindrical Surface.......................................................................................219
O.5.4. MbConeSurface Conical Surface..................................................................................................220
O.5.5. MbSphereSurface Spherical Surface.............................................................................................221
O.5.6. MbTorusSurface Toroidal Surface................................................................................................222
O.5.7. MbExtrusionSurface Extrusion Surface........................................................................................223
O.5.8. MbRevolutionSurface Revolution Surface....................................................................................224
O.5.9. MbExpansionSurface Motion Surface..........................................................................................225
O.5.10. MbSpiralSurface Spiral Surface..................................................................................................227
O.5.11. MbEvolutionSurface Swept Surface...........................................................................................228
O.5.12. MbExactionSurface Swept Surface with Adaptation...................................................................229
O.5.13. MbSectorSurface Sectorial Surface.............................................................................................230
O.5.14. MbRuledSurface Ruled Surface..................................................................................................231
O.5.15. MbLoftedSurface Surface Based on a Family of Curves............................................................232
O.5.16. MbElevationSurface Surface Based on a Family of Curves and a Guiding Curve......................233
O.5.17. MbCornerSurface Surface Based on Three Curves.....................................................................234
O.5.18. MbCoverSurface Coons Surface.................................................................................................235
O.5.19. MbCoonsPatchSurface Coons Surface........................................................................................237
O.5.20. MbMeshSurface Surface Based on a Network of Curves............................................................238
O.5.21. MbJoinSurface Joint Surface......................................................................................................239
O.5.22. MbSplineSurface NURBS Surface.............................................................................................240
O.5.23. MbOffsetSurface Equidistant Surface.........................................................................................242
O.5.24. MbChamferSurface Chamfer Surface.........................................................................................243
O.5.25. MbFilletSurface Fillet Surface....................................................................................................244
O.5.26. MbChannelSurface Fillet Surface...............................................................................................247
O.5.27. MbCurveBoundedSurface Surface with Arbitrary Borders.........................................................248

O.6. SPECIAL OBJECTS..........................................................................................................................252
O.6.1. MbFunction Function....................................................................................................................252
O.6.2. MbConstFunction Constant Function...........................................................................................253
O.6.3. MbLineFunction Linear Function.................................................................................................253
O.6.4. MbCubicFunction Cubic Hermite Function..................................................................................253
O.6.5. MbCubicSplineFunction Cubic Spline Function...........................................................................254
O.6.6. MbCharacterFunction Character Function....................................................................................255
O.6.7. MbMultiline Multiline..................................................................................................................255
O.6.8. MbContourWithBreaks Two-Dimensional Contour with Breaks..................................................256
O.6.9. MbRegion Region.........................................................................................................................257
O.6.10. MbLegend Auxiliary Geometric Object......................................................................................258
O.6.11. MbMarker Marker.......................................................................................................................259
O.6.12. MbThread Thread Graphic Symbol.............................................................................................259
O.6.13. MbPointsSymbol Symbol...........................................................................................................260
O.6.14. MbRough Surface Finish Symbol...............................................................................................260
O.6.15. MbLeader Leader Line Symbol..................................................................................................260

O.7. TOPOLOGICAL OBJECTS..............................................................................................................262
O.7.1. MbTopologyItem Topological Object...........................................................................................262
O.7.2. MbFace Face.................................................................................................................................263
O.7.3. MbEdge Edge...............................................................................................................................263
O.7.4. MbVertex Vertex...........................................................................................................................264
O.7.5. MbCurveEdge Face Edge.............................................................................................................265
O.7.6. MbLoop Face Cycle......................................................................................................................267
O.7.7. MbOrientedEdge Oriented Face Edge...........................................................................................268
O.7.8. MbFaceShell Set of Faces.............................................................................................................269
O.7.9. Copying a Set of Faces..................................................................................................................272
O.7.10. Naming of Faces, Edges and Vertices.........................................................................................273

4



O.8. OBJECTS OF GEOMETRIC MODEL............................................................................................274
O.8.1. MbItem Geometric Model Object.................................................................................................274
O.8.2. MbSolid Solid Body.....................................................................................................................275
O.8.3. MbWireFrame Wireframe.............................................................................................................279
O.8.4 MbPointFrame Point Frame...........................................................................................................281
O.8.5. MbMesh Polygonal Object...........................................................................................................281
O.8.6 MbInstance Insertion.....................................................................................................................283
O.8.7. MbAssembly Assembly Unit........................................................................................................283
O.8.8. MbSpaceInstance Three-Dimensional Object Insertion................................................................284
O.8.9. MbPlaneInstance Two-Dimensional Object Insertion...................................................................285
O.8.10. MbAssistingItem Auxiliary Object.............................................................................................286

R.1. CONSTRUCTING TRIANGULATION...........................................................................................288
R.1.1. Triangulation Calculation Control.................................................................................................288
R.1.2. Constructing a Polygonal Object...................................................................................................289
R.1.3. Adding a Polygonal Object............................................................................................................291
R.1.4. Constructing Polygons for an Object.............................................................................................291
R.1.5. Constructing Triangulation for a Face...........................................................................................293
R.1.6. Constructing Triangulation for a Solid..........................................................................................294
R.1.7. Constructing Polygonal Objects for a Set of Solids.......................................................................295

R.2. CONSTRUCTING FLAT PROJECTIONS......................................................................................296
R.2.1. Data Required to Construct Flat Projections.................................................................................296
R.2.2. Constructing Model Flat Projection..............................................................................................297
R.2.3. Constructing Polygonal Projections of Solids...............................................................................298
R.2.4. Constructing a Triangulation Outline............................................................................................299

R.3. CALCULATION OF INERTIAL CHARACTERISTICS...............................................................302
R.3.1. Inertial Characteristics of a Model................................................................................................302
R.3.2. Inertial Solid Characteristics.........................................................................................................303
R.3.3. Inertial Characteristics for a Set of Solids.....................................................................................304
R.3.4. Inertial Characteristics of a Model................................................................................................305
R.3.5. Calculation of Surface Area..........................................................................................................305
R.3.6. Calculation of Solid Volume.........................................................................................................307

5



INTRODUCTION

General Information

C3D geometric kernel can be used as a software component in Computer-Aided Design systems.
C3D geometric kernel  is  a software implementation of mathematical  methods for building numerical 

models of the geometry of real and imaginary objects, as well as mathematical methods used to operate these  
models. Numerical models are used in systems for Computer Aided Design, Computer Aided Engineering 
and Computer Aided Manufacturing of the modeled objects. Numerical models of the geometry for real and 
imaginary objects are called geometric models.

A geometric model describes the shape of the modeled object and relations between model elements. In  
addition, a geometric model contains the history (methods and sequence) of its construction. Model elements 
have attributes that provide information about physical, technological and other properties.

Functionality

C3D geometric kernel contains the following elements of geometric model: description of the shape of 
the modeled object; description of relations between geometric model elements; model construction history 
and attributes of geometric model elements.

C3D geometric kernel uses Boundary Representation to describe the shape of the modeled object. C3D 
geometric kernel also supports Polygonal Representation. Solid Modeling and Surface Modeling methods are 
used to build a geometric model.

C3D geometric kernel builds polygonal model based on its boundary representation. A polygonal model 
is built by triangulating geometric model elements; it is used for visualization and calculations. In addition,  
C3D geometric kernel maps flat projections of geometric model (Mapping) calculates its Inertial Properties 
and detects collision of model elements (Collision Detection).

Relations between model elements provide geometric constraints for three- and two-dimensional objects 
of  the  geometric  model.  Geometric  constraints  are  the  conditions  imposed on  model  elements  that  are  
expressed as equations. Geometric constraints permit to edit  the model,  to create assemblies and similar  
models, as well as to simulate mechanisms.

Models used to construct methods, their sequences and all the necessary input data are recorded in a 
construction  log.  The  construction  log  permits  to  edit  the  geometric  model  and  to  rebuild  it  with  new 
parameters.

Attributes can be used to store additional information on elements of the geometric model. Objects of 
geometric model as well as individual elements have attributes.

C3D geometric kernel uses the following formats to exchange geometric model data with other systems:  
STEP, IGES, ACIS (SAT), Parasolid(X_T, X_B), STL and VRML.

Structure and Distinctive Features

C3D geometric kernel consists of three modules shown in Figure.



C3D Modeler constructs a geometric model,  edits the geometric model by changing its internal data, 
makes triangulation,  calculates inertial  properties of the model,  builds flat  projections of the model  and  
detects collisions of model elements.

C3D Solver  is  responsible  for  defining relations  between the elements  of  the  geometric  model,  this 
permits you to edit  the model,  build similar models and simulate mechanisms by recalculating variation  
relations.

C3D Converter permits to share data of the geometric model with other systems.
So, C3D geometric kernel includes geometric constraints solving component C3D Solver and exchange 

data converter C3D Converter. This is the first  distinctive feature of the C3D geometric kernel.  Another  
distinctive feature is the direct access to C3D objects, which permits you to extend functionality by inheriting 
from C3D objects.

Theoretical Foundations

C3D geometric kernel uses a boundary representation that exactly describes the geometric shape of the  
modeled object. To describe geometric shapes, C3D uses a set of faces located at the border that separates the 
internal volume of the modeled object from the rest of the volume. The faces are curved surfaces jointed at  
their edges. The edges of the faces may have complex shapes. The faces are being created and jointed when a  
model is being built. Model construction and data management methods of C3D geometric kernel provide 
this.

Geometric constraints that describe relations between model elements and other conditions are formulated 
as equations. C3D geometric kernel uses a variational approach to find a solution that satisfies the equations.  
Variational approach ensures equal rights of all geometric constraints.

Boundary representation uses triangulation to enable construction of polygonal model representation for  
visualization and geometric calculations. Polygonal objects consist of triangular and quadrilateral plates that  
approximate the faces and broken lines that approximate the edges. Delaunay triangulation in the plane of  
parameters of surfaces is used in C3D geometric kernel.

C3D geometric  kernel  can  create  NURBS  (Non-Uniform Rational  B-Spline)  copies  for  curves  and 
surfaces.  NURBS objects  are  used  for  direct  modeling and for  data  exchange,  when there  is  no  direct 
correspondence between the objects of C3D geometric kernel and the objects in exchange formats.

C3D  geometric  kernel  uses  mathematical  objects,  methods  and  algorithms  described  in  the  book: 
Geometric  Modeling,  N.  Golovanov.  — Charleston:  2015,  http://www.amazon.com/Geometric-Modeling-
The-mathematics-shapes/dp/1497473195 .

Package

C3D geometric kernel package contains c3d.lib, c3d.dll, libc3d.so and libmath.dylib library files and a set 
of  Include/*.h  header  files.  In  Windows,  library  files  were  compiled  in  32bit/64bit,  ISO/Unicode  and 
Debug/Release configurations in VisualStudio 2005,  VisualStudio 2008, VisualStudio 2010,  VisualStudio 
2012,  VisualStudio 2013 and VisualStudio 2015  development environments. GCC compiler was used in 
64bit, Unicode and Debug/Release configurations in Linux OS. Library files were also compiled in Mac OS 
(64bit,  Unicode and Debug/Release) using Clang compiler. GCC compiler  was used in Android OS for 
architectures armeabi-v7a and arm64-v8a.

Include/*.h header files were used to generate C3D geometric kernel documentation. Header files contain  
description of C3D geometric kernel objects and methods in Russian and English. C3D geometric kernel 
objects and methods are also described in this Developer Manual. Changes.txt file contains information on 
the changes of geometric kernel interface.

The  distribution  kit  contains  geometric  kernel  wrapper  that  permits  to  use  .NET technology  when 
applications are developed in C#.

Besides  C3D  geometric  kernel,  the  package  also  contains  test.exe  application  for  Windows  that 
demonstrates  the  capabilities  of  C3D geometric  kernel,  its  source code,  CMakeLists.txt  file  to  generate  
application project and a set of files with models. Available the source code of example of using the C3D 

7

http://www.amazon.com/Geometric-Modeling-The-mathematics-shapes/dp/1497473195
http://www.amazon.com/Geometric-Modeling-The-mathematics-shapes/dp/1497473195


geometric kernel in the Android OS.
In order to run test.exe, please enter the key and the signature by selecting

Help -> License_Key, Signature item in the menu.

Test Application

Ready-to-use  Windows-based  test  application  for  C3D geometric  kernel  is  stored  in  Example/Demo 
folder.

Test_VS2005.sln and Test_VS2005.vcproj files contain C3D geometric kernel test application solution 
and project respectively for Microsoft VisualStudio 2005.

Test_VS2012.sln,  Test_VS2012.vcxproj  and  Test_VS2012.vcxproj.filters  files  contain  C3D geometric 
kernel test application solution and project respectively for Microsoft VisualStudio 2012.

To create a project and compile the test application of geometric kernel C3D, it is required to perform the 
following steps:

1. Create a test folder (for example, TestApp) in any location of your choice.
2. Choose an archive in the «C3D» catalog corresponding to your development environment.
3. Copy <Debug>, <Include>, <Release> folders from the chosen archive to the test folder.
4. Copy <Source> folder from the «Example» archive to the test folder.
5. Make sure that the test folder (TestApp) contains <Debug>, <Include>, <Release> and <Source> 

subfolders.
6. Install CMake and use «Add CMake to the system PATH for all users» option during installation.
7. Create a project for test application using the following procedure.

Run CMake to generate a project using CMakeLists.txt file.
Specify <path_to_testapp>\TestApp\Source folder in «Where is the source code» field.
Specify <path_to_testapp>\TestApp\Build folder in «Where to build the binaries» field.
Click Configure to make settings for the project.
Confirm creation of <path_to_testapp>\TestApp\Build folder in «Create Directory» dialog box.
Specify  development  environment  configuration  appropriate  to  C3D  version  in  «Specify  the 
generator for this project» dialog box.
Click Generate to build project files.  

8. Run newly created TestApp\Build\Test.sln test application project in the development environment.
9. In  order  to  activate  C3D geometric  kernel,  before  compilation  specify  the  actual  key  and  the 

signature in test_manager.cpp file to modify EnableMathModules(...) method call in Manager object 
constructor.

10. After  compiling,  run  newly  generated  test  application  test.exe  from  TestApp\Debug  or 
TestApp\Release folder, respectively.

The above procedure is described in readme.txt file.

Development in .NET Environment

C3D geometric kernel can work in .NET environment. You should use the wrapper included in C3D 
geometric kernel package to develop applications in .NET environment.

C3D  geometric  kernel  wrapper  is  NetC3D.dll  file  that  was  built  using  .Framework4.5  platform  in 
32bit/64bit,  Debug/Release configurations and VisualStudio 2012 and in VisualStudio 2013 development  
environments. The library was compiled with Strong Name signature support.

Please execute the following procedure to use C3D geometric kernel in newly developed C# applications:
1. In C3D geometric kernel package, select NetC3D.dll file with the required configuration: 32bit/64bit  

or Debug/Release in VisualStudio 2012 or VisualStudio 2013 development environment.
2. Copy c3d.dll file from the same package for the same configuration and development environment: 

32bit/64bit,  Debug/Release  or  VisualStudio  2012/VisualStudio  2013  to  the  folder  containing 
NetC3D.dll.

3. Include NetC3D.dll file into the current project: References->Add Reference->Browse..., then select  

8



NetC3D.dll file.
4. Enter the license key and the signature before calling functions from NetC3D.dll. This can be done 

as follows:
var key = Environment.GetEnvironmentVariable("C3Dkey");
var signature = Environment.GetEnvironmentVariable("C3Dsignature");
NetC3D.ToolEnabler.EnableMathModules(key, signature);
where C3Dkey and C3Dsignature are environment variables containing the key and the signature.

9



M.1. METHODS USED TO SOLIDS CONSTRUCTING

The main elements of the geometric model serve the solids. C3D geometric kernel constructs solids that 
fully or partially describe the surface of the modeled object. The solid can be closed and non-closed. Closed 
solid doesn't contain boundary edges. It describes the whole surface of the modeled object and the set of its  
internal points. Non-closed solid contains boundary edges. It describes only a part of surface of the modeled 
object. Many solids have a simple form and are built on the basis of points, curves and surfaces.

M.1.1. Constructing an Elementary Solid

Method
MbResultType
ElementarySolid ( SArray<MbCartPoint3D> & points,
                                ElementaryShellType solidType,
                                const MbSNameMaker & names,
                                 MbSolid*& result )
constructs an elementary solid (a sphere, a torus, a cylinder, a cone, a straight parallelepiped, a pyramid or a 
rounded plate) based on specified points.

Method input parameters are:
• points is a set of control points,
• solidType is the type of the created solid,
• names is faces namer.

Method output parameter is result constructed solid.
If  successful,  the  method returns  rt_Success,  otherwise  it  returns  an  error  code  from MbResultType 

enumeration.
This method is declared in action_solid.h file.
points parameter contains the control points used to construct a solid.  solidType parameter defines the 

type of the created solid. names parameter is responsible for naming faces of the constructed solid.
The number of required control points depends on the type of created solid. Table M.1.1.1 contains data  

on the number of control points in points set required to construct a solid that belongs to solidType type.

Table M.1.1.1.

solidType Solid type Number of control points

et_Sphere sphere 3 points

et_Torus torus 3 points

et_Cylinder cylinder 3 points

et_Cone cone 3 points

et_Block block 4 points

et_Wedge wedge 4 points

et_Plate plate 4 points

et_Prism prism the number of base nodes + 1 point

et_Pyramid pyramid the number of base nodes + 1 point

When a sphere is constructed, points[0] from the set defines the сenter of the sphere, points[1] defines 
the direction of axisZ in the local coordinate system of the sphere, points[2] along with the points mentioned 
above define the plane of axisX and axisZ in the local coordinate system of the sphere. The distance between 
points[0] and points[2] is defined by the radius of the sphere, see Figure M.1.1.1.



Figure M.1.1.1.

When a torus is constructed, a point from points[0] set defines the  сenter of the torus,  points[1] point 
defines the direction of  axisX in torus local  coordinate system,  points[2] point  along with the previous 
points defines the plane of axisX and axisZ in torus local coordinate system. The distance between points[0] 
and  points[1] points defines the larger torus radius; the distance between  points[1] and  points[2] points 
defines the smaller torus radius, see Figure M.1.1.2.

Figure M.1.1.2.

When a cylinder is constructed, a point from  points[0] set defines the center of cylinder lower base, 
points[1] point defines the center of the upper cylinder base and the direction of  axisZ  in cylinder local 
coordinate system,  points[2] point along with the previous points defines the plane of axisX and axisZ in 
cylinder  local  coordinate  system.  The distance  between  points[0]  and  points[1]  points  defines  cylinder 
height, the distance from axisZ to points[2] point defines cylinder radius, see Figure M.1.1.3.

Figure M.1.1.3.

When a cone is constructed, a point from points[0] set defines cone vertex,  points[1] point defines the 
center of the cone base and axisZ direction in cone local coordinate system, points[2] point along with the 

11



previous points defines the plane of axisX and axisZ in cone local coordinate system. The distance between 
points[0] and points[1] points defines cone height; the cone angle is defined taking into account the fact that 
points[2] point lies on cone lateral surface, see Figure M.1.1.4.

Figure M.1.1.4.

When a rectangular block is constructed, points[0] and points[1] points define an edge and two vertices 
of the block, points[2] point along with the previous points define the plane of lower block base, block edge  
that  is  parallel  to  points[0]  edge and  points[1]  edge goes  through  points[2]  point,  and  points[3]  point 
defines the plane of the upper base of the block, see Figure M.1.1.5.

Figure M.1.1.5.

When a rectangular wedge is constructed, points[0] and points[1] points define an edge and two vertices 
of the wedge, points[2] point along with the previous points defines the plane of wedge lower base and its  
vertex,  wedge  edge  that  is  parallel  to  points[0]  and  points[1]  edge  goes  through  point  points[2],  and 
points[3] point defines the plane of the upper wedge base, see Figure M.1.1.6.

Figure M.1.1.6.

When a rectangular plate with cylindrical ends is constructed,  points[0] and points[1] points define an 

12



edge and two vertices of the plate, points[2] point along with the previous points defines the plane of plate 
lower base, plate edge is parallel to points[0] and points[1] edge goes through points[2] point, and points[3] 
point defines the upper plate base plane, see Figure M.1.1.7.

Figure M.1.1.7.

When a  right-angle  prism with  a  polygon  at  the  base  is  constructed,  weightCentre, points[0]  and 
points[1] points define the plane of prism lower base, where weightCentre is the center of gravity point of 
the base. points[0],  points[1],  ...,  points[n–1] projection of points define the polygonal base, and prism 
height is defined by the distance from the plane of the lower base to points[n] last point. In Figure M.1.1.8, 
you can see a right-angle prism with a pentagonal base.

Figure M.1.1.8.

When a pyramid with a polygon at the base is constructed, weightCentre, points[0] and points[1] points 
define the plane of pyramid lower base, where  weightCentre is the center of gravity point of the base. 
points[0],  points[1], ...,  points[n–1]  points define the polygonal base, and points[n] last point defines the 
top of the pyramid. In Figure M.1.1.9, you can see a pyramid with a pentagonal base.

Figure M.1.1.9.

13



Points from points set that define the base of the pyramid or prism may be located at the vertices of a  
regular polygon. There may be any polygon at the base of a prism or a pyramid.

ElementarySolid method adds the MbElementarySolid constructor to the log of the newly constructed 
solid. This constructor contains all data required to construct the solid. MbElementarySolid constructor is  
declared in cr_elementary_solid.h file.

test.exe  test  application  constructs  elementary  solids  using  the  points  specified  by  «Create->Solid-
>Elementary->» and «Create->Solid->By Points->» menu commands.

M.1.2. Constructing an Elementary Solid by a Given Surface

Method
MbResultType
ElementarySolid ( const MbSurface & surface,
                                 const MbSNameMaker & names,
                                 MbSolid *& result )
constructs an elementary solid by a given surface.

Method input parameters are:
• surface is an elementary surface,
• names is faces namer.

Method output parameter is result constructed solid.
If  successful,  the  method returns  rt_Success,  otherwise  it  returns  an  error  code  from MbResultType 

enumeration.
This method is declared in action_solid.h file.
surface parameter contains the original surface. names parameter is responsible for naming faces of the 

constructed solid.
An elementary surface may be represented by MbSphere sphere, MbTorus toroidal surface, MbCylinder 

cylindrical surface or MbCone conical surface. In Figure M.1.2.1, you can see a spherical surface and a solid 
that was constructed by it.

Figure M.1.2.1.

In Figure M.1.2.2, you can see a toroidal surface and a solid that was constructed for it.

14



Figure M.1.2.2.

In Figure M.1.2.3, you can see a cylindrical surface and a solid that was constructed for it.

Figure M.1.2.3.

In Figure M.1.2.4, you can see a conical surface and a solid that was constructed for it.

15



Figure M.1.2.4.

If  these  are  cyclically  closed  surfaces,  then  the  solids  to  be  constructed  for  them  would  have  a  
corresponding form. If the elementary surface does not belong to any of these types, then the method returns 
rt Error error code.

ElementarySolid method adds MbRevolutionSolid constructor to the log of the newly constructed solid. 
This constructor contains all data required to construct the solid. MbRevolutionSolid constructor is declared 
in cr_revolution_solid.h file.

test.exe  constructs  an  elementary  solid  for  a  given  surface  using  «Create->Solid->By  surface->By 
elementary surface» menu command.

M.1.3. Constructing an Extrusion Solid

Method
MbResultType
ExtrusionSolid (const MbSweptData & sweptData,
                             const MbVector3D & direction,
                             const MbSolid * solid1,
                             const MbSolid * solid2,
                             bool checkIntersection,
                             ExtrusionValues & params,
                             const MbSNameMaker & names,
                             PArray<MbSNameMaker> & сnames,
                             MbSolid *& result )
constructs an extrusion solid.

Method input parameters are:
• sweptData are data on curve generators,
• direction is the extrusion direction,
• solid1 is used when option «To next object» in the forward direction is selected,
• solid2 is used when option «To next object» in the backward direction is selected,
• checkIntersection is a flag indicating that it is necessary to merge solid1 and solid2 solids subject to 

checking the intersection,
• params are construction parameters,
• names is face namer,
• cnames are namers of curve generator segments.

Method  output  parameter  is  result constructed  solid.  If  successful,  the  method  returns  rt_Success, 
otherwise it returns an error code from MbResultType listing.

This method is declared in action_solid.h file.

16



Extrusion solid belongs to the type of motion solids, which are constructed by moving a generating curve 
along  a  guiding  curve.  A line  segment  is  a  guiding  curve  for  an  extruded solid.  An  extruded solid  is 
constructed by moving one or more curves along the segment,  the direction of which is  determined by 
direction vector.

sweptData parameter contains information on generator curves. MbSweptData class and ExtrusionValues 
structure are described in swept_parameter.h file. Generating curves may be two-dimensional  contours on 
surface or contours in contours3D space. In particular cases, two-dimensional contours may be located on a 
plane. contours may have arbitrary orientation. contours may be nested with each other. contours shouldn't 
intersect with each other.

A solid  can  be  constructed  in  the  forward direction in  respect  to  direction vector,  in  the  backward 
direction in respect  to  direction vector,  as well  as  in  both directions.  Construction parameters  for  each 
direction are set by MbSweptSide objects.

params parameter contains information on MbSweptSide side1 extrusion method in forward direction as 
well as information on MbSweptSide side2 extrusion method in the backward direction. Extrusion in each 
direction  can  be  executed  using  three  methods.  If  way==sw_scalarValue  then  extrusion  is  executed  to 
scalarValue length  in  the  direction  of  side1  or  side2,  respectively.  If  way==sw_shell  then  extrusion  is 
executed to the nearest solid1 or solid2 object, respectively. If way==sw_surface then extrusion is executed 
to side1.surface or side2.surface, respectively, if side1.distance=0 or side2.distance=0. If way==sw_surface 
and distance!=0 then extrusion is executed to the equidistant surface to  side1.surface or to the equidistant 
surface to  side2surface, respectively. If  side1.rake!=0 or  side2.rake!=0, then graded extrusion is executed 
with side1.rake or side2.rake grade in the respective direction. params.thickness1 parameter defines outward 
offset from the generator curve, and params.thickness2 parameter defines inward offset from the generator 
curve.  params.shellClosed parameter controls whether the constructed solid is closed.  params.checkSelfInt 
parameter  defines  the  need  to  check  the  result  of  construction  for  self-intersection.  By  default  
params.checkSelfInt=false and the check is not performed.

In Figure  M.1.3.1,  you can see the data  used for  construction,  as  well  as  the  scheme to inherit  the  
parameters of constructed extrusion solid (ExtrusionValues & params).

Figure M.1.3.1.

17



names and сnames parameters are responsible for naming the faces of the newly constructed solid.
In Figure M.1.3.2, you can see a two-dimensional contour and surface (MbPlane) flat surface.

Figure M.1.3.2.

In Figure M.1.3.3,  you can see a closed solid that  was constructed by using specified parameters to  
extrude the contour shown in Figure M.1.3.2. Each contour segment has a corresponding face of the solid, its  
name was taken from the corresponding element of сnames[0] name generator.

Figure M.1.3.3.

In Figure M.1.3.4, you can see a thin-walled closed solid that was constructed by extrusion based on  
specified contour parameters shown in Figure M.1.3.2.

18



Figure M.1.3.4.

In Figure M.1.3.5, you can see a non-closed solid that was constructed by using extrusion with specified 
contour parameters shown in Figure M.1.3.2. Parameters used to construct the solid shown in Figure M.1.3.3  
differ  from parameters used to construct  the solid shown in Figure M.1.3.5 only by  params.shellClosed 
value.

Figure M.1.3.5.

In Figure M.1.3.6, you can see two-dimensional  contour, flat  surface (MbPlane) as well as two solids 

19



(solid1 and solid2) that will be used to construct an extruded solid. For construction solid1 and solid2 solids 
should  completely  cover  contour  motion  path  in  the  appropriate  direction.  In  this  case,  the  following 
parameters  should  be  taken  into  account:  params.side1.rake,  params.side2.rake,  params.thickness1, 
params.thickness2.

Figure M.1.3.6.

Such construction is executed by extruding the contour to a length exceeding the maximum distance to  
the specified solid and then subtracting the specified solid from the newly constructed solid.

In Figure M.1.3.7, you can see a solid that was constructed by extruding the contour shown in Figure 
M.1.3.6 with «To the nearest objects» option selected for solid1 and solid2 solids.

20



Figure M.1.3.7.

In Figure M.1.3.8, you can see a thin-walled solid with sloping faces constructed by extruding the contour 
shown in Figure M.1.3.6 with «To the nearest objects» option selected for solid1 and solid2 solids.

21



Figure M.1.3.8.

In Figure  M.1.3.9,  you can see a  two-dimensional  contour,  surface (MbPlane)  flat  surface and two 
surfaces,  surface1 and  surface2 (that will  be used to construct the extruded solid).  For the construction 
surface1 and surface2 should completely cover the path of the contour moved in the appropriate direction. 
In this case, the following parameters should be taken into account: params.side1.rake,  params.side2.rake, 
params.thickness1,  params.thickness2.  The extruded solid is  cut  off  by the specified surfaces or by the 
surfaces equidistant to them if params.side1.distance or params.side2.distance are not equal to zero.

22



Figure M.1.3.9.

In Figure M.1.3.10, you can see a solid that was constructed by extruding the contour shown in Figure  
M.1.3.9 with «To the surface» options. surface1 and surface2 were specified as such surfaces.

23



Figure M.1.3.10.

In Figure M.1.3.11, you can see a thin-walled solid with sloping faces that was constructed by extruding 
the contour shown in Figure M.1.3.9 with «To the surface» options. surface1 and surface2 were specified as 
such surfaces.

24



Figure M.1.3.11.

A two-dimensional contour may be drawn on a flat surface or on a curved surface. For example, a solid  
can be constructed by extruding a contour at a curved surface created from a cycle of one of the faces of the 
solid solid shown in Figure M.1.3.12.

25



Figure M.1.3.12.

In Figure M.1.3.13, you can see a solid that was constructed by extruding the contour on a curved surface  
shown in Figure M.1.3.12.

Figure M.1.3.13.

In Figure M.1.3.14, you can see a thin-walled solid that was constructed by extruding the contour on a  
curved surface shown in Figure M.1.3.12.

26



Figure M.1.3.14.

In Figure M.1.3.15, you can see a non-closed solid that was constructed by extruding the contour on a 
curved surface shown in Figure M.1.3.12.

27



Figure M.1.3.15.

If one surface contains a set of non-intersecting two-dimensional contours, then the considered method 
defines external and nested internal contours (multilevel nesting can be used). In Figure M.1.3.16, you can  
see a set of non-intersecting two-dimensional contours and surface (MbPlane) flat surface.

Figure M.1.3.16.

In Figure M.1.3.17, you can see a multi-part closed solid that was constructed by extruding the set of 
contours shown in Figure M.1.3.16.

28



Figure M.1.3.17.

In Figure M.1.3.18, you can see a multi-part closed solid that was constructed by extruding (with a slope) 
a set of contours shown in Figure M.1.3.16.

Figure M.1.3.18.

In Figure M.1.3.19 you can see a multi-part thin-walled closed solid that was constructed by extruding the  
set of contours shown in Figure M.1.3.16.

29



Figure M.1.3.19.

In Figure M.1.3.20, you can see two three-dimensional contours.

Figure M.1.3.20.

In Figure M.1.3.21, you can see a double-connected thin-walled closed solid that was constructed by 
extruding three-dimensional contours shown in Figure M.1.3.20.

30



Figure M.1.3.21.

In  Figure  M.1.3.22,  you  can  see  two  non-closed  solids  that  were  constructed  by  extruding  three-
dimensional contours shown in Figure M.1.3.20. The solids were constructed separately for each contour.

31



Figure M.1.3.22.

ExtrusionSolid extrusion solid construction method adds MbExtrusionSolid constructor in the log of the 
newly constructed  solid  which  contains  all  the  necessary data  to  construct  the  solid.  MbExtrusionSolid 
constructor is declared in cr_extrusion_solid.h file.

test.exe test application constructs an extruded solid using  «Create->Solid->By curves->By extruding a 
surface curve» and «Create->Solid->By curves->By extruding a 3D curve» menu commands.

M.1.4. Constructing a Revolution Solid

Method
MbResultType
RevolutionSolid ( const MbSweptData & sweptData,
                               const MbAxis3D & axis,
                               RevolutionValues & params,
                               const MbSNameMaker & names,
                               PArray<MbSNameMaker> & сnames,
                               MbSolid *& result )
constructs a revolution solid.

Method input parameters are:
• sweptData are data on curve generators,
• axis is rotation axis,
• params are construction parameters,
• names is face namer,

32



• cnames are namers of curve generator segments.
Method output parameter is result constructed solid.
If  successful,  the  method returns  rt_Success,  otherwise  it  returns  an  error  code  from MbResultType 

enumeration. This method is declared in action_solid.h file.
Rotation solid belongs to the type of motion solids which are constructed by moving a curve generator 

along  a  guiding  curve.  A circle  or  an  arc  can  be  a  guidng  curve  for  rotation  solid.  Rotation  solid  is  
constructed by rotating one or more curves around axis.

sweptData parameter  contains  information  on  generator  curves.  MbSweptData  class  and 
RevolutionValues  structure  are described  in  swept_parameter.h  file.  Generating  curves  may  be  two-
dimensional  contours on  surface or contours in  contours3D space. In particular cases, two-dimensional 
contours may be located on a plane. contours may have arbitrary orientation. contours may be nested with 
each other. contours shouldn't intersect with each other.

Curves can be rotated in forward direction about  axis,  in backward direction about  axis,  and in both 
directions. The rotation in forward direction is counterclockwise when looking toward the axis. Construction 
parameters for each direction are set by MbSweptSide objects.

params parameter contains information on rotation method in forward direction MbSweptSide side1 and 
information on rotation method  in backward direction MbSweptSide side2. Rotation in each direction can be 
executed  in  two  ways.  If  way==sw_scalarValue,  then  rotation  is  executed  about  scalarValue angle  in 
direction side1 or side2, respectively. If way==sw_surface, then rotation is executed about side1.surface or 
side2.surface angle, respectively, if side1.distance=0 or side2.distance=0. If way==sw_surface and distance!
=0,  then  rotation  is  executed  about  to  equidistant  surface  to  side1.surface or  to  equidistant  surface  to 
side2.surface, respectively.  params.thickness1 and params.thickness2 parameters define the wall thickness 
of  thin-walled  solid.  params.thickness1 parameter  defines  outward  offset  from the generator  curve,  and 
params.thickness2 parameter defines inward offset from the generator curve. params.shellClosed parameter 
controls whether the constructed solid is closed. params.checkSelfInt parameter defines the need to check the 
result  of  construction  for  self-intersection.  By default,  params.checkSelfInt=false  and  the  check  is  not 
performed. params.shape parameter controls the shape of the constructed solid. If params.shape=1, then the 
constructed solid has torus topology. If params.shape=0, then the solid has sphere topology.

In Figure M.1.4.1, you can see the data used for construction, as well as parameters inheritance scheme  
for constructed revolvution solid (RevolutionValues & params).

Figure M.1.4.1.

33



names and сnames parameters are responsible for naming the faces of the newly constructed solid.
In Figure M.1.4.2, you can see a two-dimensional contour, a flat surface (MbPlane) and a rotation axis.

Figure M.1.4.2.

In Figure M.1.4.3, you can see a closed solid that was constructed by rotation using specified parameters  
of the contour shown in Figure M.1.4.2. Each contour segment has a corresponding face of the solid, its  
name was taken from the corresponding element of сnames[0] name generator.

Figure M.1.4.3.

In Figure M.1.4.4,  you can see a closed thin-walled solid that  was constructed by using rotation for 
specified parameters of the contour shown in Figure M.1.4.2.

34



Figure M.1.4.4.

In Figure M.1.4.5, you can see a non-closed solid that was constructed by rotation using the specified 
parameters of the contour shown in Figure M.1.4.2. Parameters used to construct the solid shown in Figure 
M.1.4.3, are not the same as the parameters for constructing the solid shown in Figure M.1.4.5, but the only 
diffrence is params.shellClosed value.

35



Figure M.1.4.5.

In Figure M.1.4.6, you can see a two-dimensional  contour, a flat  surface (MbPlane) and two surfaces 
(surface1 и surface2) that will be used to construct a revolution solid. For the construction  surface1 and 
surface2 should completely cover the path of the contour moved in the appropriate direction. The following 
parameters should be taken into account: params.thickness1, params.thickness2. A revolution solid is cut off 
by specified or equidistant surfaces if params.side1.distance or params.side2.distance are not equal to zero.

36



Figure M.1.4.6.

In Figure M.1.4.7, you can see a solid that was constructed by rotating the contour shown in Figure  
M.1.4.6 with selected options «To the surface» (surface1 and surface2).

37



Figure M.1.4.7.

In Figure M.1.4.8, you can see a thin walled-solid that was constructed by rotating the contour shown in 
Figure M.1.4.6 with selected options «To the surface» (surface1 and surface2).

38



Figure M.1.4.8.

A two-dimensional contour may be drawn on a flat surface or on a curved surface. For example, you can 
construct a solid by rotating a contour on a curved surface that was created using a cycle for one of the faces  
of the revolution solid shown in Figure M.1.4.9. 

Figure M.1.4.9

In Figure M.1.4.10, you can see a solid that was constructed by rotating the contour on the curved surface 
shown in Figure M.1.4.9.

39



Figure M.1.4.10.

In Figure M.1.4.11, you can see a thin-walled solid that was constructed by rotating the contour on the  
curved surface shown in Figure M.1.4.9.

40



Figure M.1.4.11.

In Figure M.1.4.12, you can see a non-closed solid that was constructed by rotating the contour on the 
curved surface shown in Figure M.1.4.9.

41



Figure M.1.4.12.

If one surface contains a set of non-intersecting two-dimensional contours, then the considered method 
defines external and nested internal contours (multilevel nesting can be used). In Figure M.1.4.13, you can  
see a set of non-intersecting two-dimensional contours and a flat surface (MbPlane).

Figure M.1.4.13.

In Figure M.1.4.14, you can see a multi-part closed solid that was constructed by rotating the set of  
contours shown in Figure M.1.4.13.

42



Figure M.1.4.14.

In Figure M.1.4.15, you can see a multi-part thin-walled closed solid that was constructed by rotating the 
set of contours shown in Figure M.1.4.13.

43



Figure M.1.4.15.

In Figure M.1.4.16, you can see two three-dimensional contours.

Figure M.1.4.16.

In Figure M.1.4.17, you can see a doubly-connected thin-walled closed solid that was constructed by 
rotating the three-dimensional contours shown in Figure M.1.4.16.

44



Figure M.1.4.17.

In  Figure  M.1.4.18,  you  can  see  two  non-closed  solids  that  were  constructed  by  rotating  three-
dimensional contours shown in Figure M.1.4.16.

45



Figure M.1.4.18.

RevolutionSolid method that is used to construct a revolution solid adds MbRevolutionSolid constructor 
to the log of the newly constructed solid. This constructor contains all data required to construct the solid.  
MbRevolutionSolid constructor is declared in cr_revolution_solid.h file.

test.exe test application constructs a revolution solid using  «Create->Solid->By curves->By rotating a 
surface curve» and «Create->Solid->By curves->By rotating a 3D curve» menu commands.

M.1.5. Constructing a Swept Solid

Method
MbResultType
EvolutionSolid ( const MbSweptData & sweptData,
                             const MbCurve3D &    spine,
                             EvolutionValues &       params,
                             const MbSNameMaker & names,
                             const MbSNameMaker & cnames,
                             const MbSNameMaker & snames,
                             MbSolid *& result )

46



constructs a swept solid by moving a curve generator along a guiding curve.
Method input parameters are:

• place is generating contour local coordinate system,
• contour is generating contour,
• spine is guiding curve,
• params are construction parameters,
• names is face namer,
• cnames is generator namer,
• snames is guiding line namer.

Method output parameter is result constructed solid.
If  successful,  the  method returns  rt_Success,  otherwise  it  returns  an  error  code  from MbResultType 

enumeration. This method is declared in action_solid.h file.
A swept solid is a general case of movement solids, which are constructed by moving a generator curve  

along the guiding curve. Arbitrary curve can be used as a guiding curve for a swept solid.
sweptData parameter contains information on generator curves. MbSweptData class and EvolutionValues 

structure are described in swept_parameter.h file. Generating curves may be two-dimensional  contours on 
surface or contours in contours3D space. In particular cases, two-dimensional contours may be located on a 
plane. contours may have arbitrary orientation. contours may be nested with each other. contours shouldn't 
intersect with each other.

Generator curves are moved along  spine guiding curve.  params parameter contains information about 
movement mode, presence of solid walls and their thickness and data whether the constructed solid is closed. 
params.thickness1 and  params.thickness2 parameters define wall thickness of the constructed thin-walled 
solid. params.thickness1 parameter defines outward offset from the generator curve, and params.thickness2 
parameter defines inward offset from the generator curve.  params.shellClosed parameter controls whether 
the  constructed  solid  is  closed.  params.checkSelfInt parameter  defines  the  need  to  check  the  result  of 
construction for self-intersection. By default, params.checkSelfInt=false, the check is not performed and the 
method permits you to construct self-intersecting solids. The movement can be performed in three ways.  
Movement  mode  is  defined  by  params.parallel parameter.  If  params.parallel=0,  then  the movement  of 
generator curves is coplanar. If params.parallel=1, then moving generator curves maintain their position in 
the  local  coordinate  system,  which is  tangent  to  the  generator  curve.  If  params.parallel=2,  then before 
movement, generator curves are transferred to a plane perpendicular to the starting end of the guiding curve,  
and  subsequently  they  maintain  their  position  in  the  local  coordinate  system,  which  is  tangent  to  the  
generation curve.

In Figure M.1.5.1, you can see the data used for construction, as well as parameters inheritance scheme  
for constructed swept  solid ExtrusionValues & params.

Figure M.1.5.1.

47



names, cnames и snames parameters are responsible for naming the faces of the newly constructed solid.
In Figure M.1.5.2, you can see a two-dimensional  contour, flat  surface (MbPlane) and  spine guiding 

curve.

Figure M.1.5.2.

In Figure M.1.5.3,  you can see a swept solid that  was constructed by moving the contour along the 
guiding  curve  shown  in  Figure  M.1.5.2.  The  method  of  moving  is  determined  by  params.parallel=0 
parameter, in this case the planes of solid ends remain parallel.

Figure M.1.5.3.

48



In Figure M.1.5.4, you can see a swept solid that was constructed by moving a contour along the guiding 
curve shown in Figure M.1.5.2, using the method defined by params.parallel=1 parameter. In this case, the 
plane of the solid end edge keeps its  position relative to the end of the guiding curve according to the  
position of the start edge of the plane relative to the end of the guiding curve.

Figure M.1.5.4.

In Figure M.1.5.5,  you can see a swept solid that  was constructed by moving the contour along the 
guiding  curve  shown  in  Figure  M.1.5.2.  The  method  of  moving  is  determined  by  params.parallel=2 
parameter, in this case the planes of solid ends remain perpendicular to the guiding curve at its beginning and 
end.

49



Figure M.1.5.5.

In Figure M.1.5.6, you can see a closed thin-walled swept solid that was constructed by moving the  
contour  along  the  guiding  curve  shown  in  Figure  M.1.5.2.  The  method  of  moving  is  determined  by 
params.parallel=1 parameter. Each contour segment has a corresponding solid face, its name is taken from 
the corresponding element of сnames[0] name generator.

Figure M.1.5.6.

In Figure M.1.5.7, you can see a non-closed swept solid that was constructed by moving the contour 
along  the  guiding  curve  shown  in  Figure  M.1.5.2.  The  method  of  moving  is  determined  by 

50



params.parallel=1 parameter. Parameters used to construct the solid shown in Figure M.1.5.4 are not the 
same as the parameters for constructing the solid shown in Figure M.1.5.7, the only difference is the value of  
params.shellClosed=false.

Figure M.1.5.7.

A two-dimensional contour may be drawn on a flat surface or on a curved surface. For example, a solid  
can be constructed by moving contours on a curved surface. The contours are to be created using the cycles  
of one solid solid face as shown in Figure M.1.5.8.

Figure M.1.5.8.

In Figure M.1.5.9, you can see a swept solid that was constructed by moving two contours on a curved 
surface along the guiding curves shown in Figure M.1.5.8. The method of moving the contours is determined 
by params.parallel=1.

51



Figure M.1.5.9.

In Figure M.1.5.10,  you can see a doubly-connected thin-walled swept solid that  was constructed by 
moving two contours on a curved surface along the guiding curves shown in Figure M.1.5.9.

52



Figure M.1.5.10.

In Figure M.1.5.11,  you can see a doubly-connected non-closed swept solid that  was constructed by 
moving two contours on a curved surface along the guiding curve shown in Figure M.1.5.9.

53



Figure M.1.5.11.

If one surface contains a set of non-intersecting two-dimensional contours then the considered method 
defines external and nested internal contours (multilevel nesting can be used). In Figure M.1.4.12, you can  
see a set of non-intersecting two-dimensional contours, a flat surface (MbPlane) and spine guiding curve.

54



Figure M.1.5.12.

In Figure M.1.5.13, you can see a multi-part multiply-connected swept solid that was constructed by 
moving a set of flat contours along the guiding curve shown in Figure M.1.5.12. The contours should not 
intersect, but they can be nested several times.

Figure M.1.5.13.

In  Figure  M.1.5.14,  you  can  see  a  multi-part  multiply-connected  thin-walled  swept  solid  that  was 

55



constructed by moving a set of flat contours along the guiding curve shown in Figure M.1.5.12.

Figure M.1.5.14.

In Figure M.1.5.15, you can see a non-closed multi-part swept solid that was constructed by moving the 
set of flat contours along the guiding curve shown in Figure M.1.5.12. When a non-closed swept solid is  
constructed, the contours should not be nested.

56



Figure M.1.5.15.

In Figure M.1.5.16, you can see two three-dimensional contours (contour3D 0 and  contour3D 1) and 
spine guiding curve that will be used to construct swept solids.

Figure M.1.5.16.

In Figure M.1.5.17, you can see a closed doubly-connected thin wall swept solid that was constructed by 
moving the three-dimensional contours along the guiding curve (please see Figure M.1.5.16).

57



Figure M.1.5.17.

In  Figure  M.1.5.18,  you  can  see  two  non-closed  solids  that  were  constructed  by  moving  three-
dimensional contours along the guiding curve (please see Figure M.1.5.16).

Figure M.1.5.18.

EvolutionSolid method that is used to construct a swept solid adds MbEvolutionSolid constructor to the 
log  of  the  newly  constructed  solid,  which  contains  all  necessary  data  to  construct  the  solid.  
MbEvolutionSolid constructor is declared in cr_evolution_solid.h.

test.exe constructs a swept solid by «Create->Solid->By curves->By moving curves» menu command.

58



M.1.6. Constructing a Solid by Flat Sections

Method
MbResultType
LoftedSolid ( SArray<MbPlacement3D> & places,
                        RPArray<MbContour> & contours,
                        const MbCurve3D * spine,
                        LoftedValues &  params,
                        SArray<MbCartPoint3D> * points,
                        const MbSNameMaker &  names,
                        PArray<MbSNameMaker> &  snames,
                        MbSolid *& result )
constructs a solid based on flat sections.

Method input parameters are:
• places is the set of local coordinate systems of generating contours,
• contours is the set of generating contours,
• spine is the guiding curve (it may be missing),
• params are construction parameters,
• points are a set of control points (it may be missing),
• names is face namer,
• snames are namers of generating contours.

Method output parameter is result constructed solid.
If  successful,  the  method returns  rt_Success,  otherwise  it  returns  an  error  code  from MbResultType 

enumeration.
This method is declared in action_solid.h file.
The surface of the newly constructed solid contains all  the flat  curves defining the solid.  places set 

contains local coordinate systems, two-dimensional contours lie in their XY plane. places and contours sets 
are aligned by index: contours[i] is located in XY plane of places[i] local coordinate system. contours may 
have arbitrary orientation. If all contours contours are closed, then beginnings of local coordinate system are 
changed so that the beginnings should located as close as possible to each other in order to prevent twisting  
of the surfaces.  points control points permit you to change the joining points in the curves of  the set of  
contours. If points set is not empty then it should be aligned with places and contours sets. spine guiding 
curve can be used to control solid shape between sections. Arbitrary curves can be used as guiding curve for  
a solid.

params parameter  contains  information  about  movement  mode,  presence  of  solid  walls  and  their 
thickness  and  data  whether  the  constructed  solid  is  closed.  params.thickness1  and  params.thickness2 
parameters define wall thickness of the constructed thin-walled solid.  params.thickness1 parameter defines 
outward offset from the generator curve, and  params.thickness2 parameter defines inward offset from the 
generator  curve.  params.shellClosed parameter  controls  whether  the  constructed  solid  is  closed. 
params.checkSelfInt parameter defines the need to check the result of construction for self-intersection. By 
default  params.checkSelfInt=false and the check is  not  performed.  params.closed parameter controls the 
presence  of  edges  of  the  solid.  If  params.closed=true  then  there  are  no  edges  and  the  solid  has  torus 
topology. params.vector1 and params.vector2 vectors define the direction of the solid in the area of the start 
and end edges. For example, they permit you to define the direction of the solid in the area of the edges  
orthogonal to edge planes. By default, params.vector1 and params.vector2 vectors are equal to zero.

In Figure M.1.6.1, you can see the data used for construction and parameters inheritance scheme for a  
constructed solid by LoftedValues & params flat sections.

59



Figure M.1.6.1.

names and snames parameters are responsible for naming faces of the newly constructed solid.
In Figure M.1.6.2, you can see a set of two-dimensional  contours and their local coordinate systems 

(places). Arrows indicate the directions of normals in local coordinate systems.

Figure M.1.6.2.

In Figure M.1.6.3, you can see a solid that was constructed by flat sections shown in Figure M.1.6.2  
according to the specified directions of the normals at the edges if params.closed=false.

60



Figure M.1.6.3.

In Figure M.1.6.4, you can see a solid that was constructed by flat sections shown in Figure M.1.6.2 if  
params.closed=true. There are no edges; the solid has torus topology.

Figure M.1.6.4.

In Figure M.1.6.5, you can see a thin-walled solid that was constructed by flat sections shown in Figure 
M.1.6.2 without determination of normals at the edges if params.closed=false.

61



Figure M.1.6.5.

In Figure M.1.6.6, you can see a thin-walled solid that was constructed by flat sections shown in Figure 
M.1.6.2 according to specified normals at the edges if params.closed=false.

Figure M.1.6.6.

In Figure M.1.6.7, you can see a thin-walled solid that was constructed by non-closed flat contours with 
not  defined  normals  at  the  edges  if  params.closed=false.  params.thickness1  and  params.thickness2 
parameters should not be equal to zero.

62



Figure M.1.6.7.

In Figure M.1.6.8, you can see a non-closed solid constructed to non-closed flat contours without normals 
at the edges if  params.closed=false.  params.thickness1 and params.thickness2 parameters may be equal to 
zero.

Figure M.1.6.8.

If flat contours have unequal quantities of segments, then some segments are divided so that the quantity 
of segments in all  contous contour sets should be the same. In Figure M.1.6.9, you can see three contours 
that have unequal quantities of segments.

63



Figure M.1.6.9.

In Figure M.1.6.10, you can see a solid that was constructed by these contours: one segment of triangular  
contour is divided into two segments, and a circle is divided into four arcs.

Figure M.1.6.10.

points control points permit you to define the position of edges connecting vertices of different contours  
in the set. points[i] indicate the positions of the joints between the segments of different contours of the set  
that should be connected by edges. To demonstrate the use of points control points, let's construct a solid by 
flat sections shown in Figure M.1.6.11.

64



Figure M.1.6.11.

In Figure M.1.6.12 and M.1.6.13, you can see solids that were constructed by flat sections shown in  
Figure M.1.6.11 according to different points control points.

Figure M.1.6.12.

Figure M.1.6.13.

65



In Figure M.1.6.14, you can see two two-dimensional contours and spine curve that would be a guiding 
curve when a solid would be constructed by flat sections with a guiding curve.

Figure M.1.6.14.

In Figure M.1.6.15, you can see a solid that was constructed by flat sections and a guiding curve shown in 
Figure M.1.6.14.

Figure M.1.6.15.

In Figure M.1.6.16, you can see a thin-walled solid that was constructed by flat sections and the guiding 
curve shown in Figure M.1.6.14.

66



Figure M.1.6.16.

In Figure M.1.6.17, you can see a non-closed solid that was constructed by flat sections and the guiding 
curve shown in Figure M.1.6.14.

Figure M.1.6.17.

LoftedSolid method constructs a solid by flat sections; it adds MbLoftedSolid constructor in the log of 
the newly constructed solid. This constructor contains all data required to construct a solid. MbLoftedSolid  
constructor is declared in cr_lofted_solid.h file.

67



test.exe  test  application  constructs  a  solid  by  flat  sections  using  «Create->Solid->By  curves->By 
sections»; «Create->Solid->By curves->By sections with a guiding curve»; «Create->Solid->By curves->By 
sections»; and «Create->Shell->By curves->By sections with a guiding curve» menu commands.

M.1.7. Creating a Solid by a Specified Set of Faces

Method
MbSolid *
CreateSolid ( MbFaceShell & faceSet,
                        const MbSNameMaker & names )
creates a solid with the specified set of faces without construction history.

Method input parameters are:
• faceSet is the set of faces,
• names is faces namer.

If successful, the method returns the newly constructed solid, otherwise it returns zero.
This method is declared in action_solid.h file.
faceSet parameter contains the initial set of faces for a solid. names parameter is responsible for naming 

faces of the constructed solid.
In Figure M.1.7.1, you can see a solid that was constructed by a set of faces.

Figure M.1.7.1.

This method gives names to unnamed faces, edges ribs and vertices and then it creates a solid for the 
specified set of faces. This method doesn't check or construct anything. If the set of faces contains boundary 
ribs,  this  method  constructs  a  non-closed  solid.  CreateSolid method  adds  MbSimpleCreator  simple 
constructor to the log of the newly constructed solid. This constructor is declared in cr_simple_creator.h file.

68



М2. OPERATIONS ON SOLIDS

One of approaches to construction of solids in geometrical modelling is similar to making a modeled 
object. First, simple solids are constructed and then a set of actions is executed in order to construct more  
complex  solids  from simple  solids.  More  complex  solids  are  constructed  by executing  operations  with 
previously constructed solids. All operations are recorded in a construction log. For closed and non-closed  
solids the same operations can lead to different results.

M.2.1. Boolean Operation on Solids

Method 
MbResultType
BooleanResult (MbSolid & solid1,
                           MbeCopyMode sameShell1,
                           MbSolid & solid2,
                           MbeCopyMode sameShell2,
                           OperationType oType,
                           const MbSNameMaker & names,
                           bool mergeFaces,
                           bool closed,
                           MbSolid *& result )
constructs a new solid by executing a Boolean operation on two specified solids.

Input parameters of the method are as follows:
• solid1 is the first solid for the Boolean operation,
• sameShell1 is copying method for the first solid,
• solid2 is the second solid for the Boolean operation,
• sameShell2 is copying method for the second solid,
• oType is Boolean operation type: bo_Union means merging of the solids,

                                                                   bo_Intersect means intersection of the solids,
                                                                   bo_Difference means subtraction of the solids,

• names is a namer used for versioning,
• mergeFaces indicates whether similar faces should be merged,
• closed indicates whether it is required to verify closedness of constructed solid.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration. The method is declared in action_solid.h file.
The method executes merge, intersect or subtract operations on points of two solids (solid1 and solid2). 

sameShell1 and  sameShell2 parameters control transfer of faces, edges and vertices of  solid1 and  solid2 
original solids to result constructed solid.

sameShell1  and  sameShell2  parameters  may  take  one  of  the  following  four  values:  cm_Copy, 
cm_KeepSurface,  cm_KeepHistory,  cm_Same.  MbeCopyMode  enumeration  is  described  in  item  O.7.9.
Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type;  it  takes one of the following three 
values:  bo_Union,  bo_Intersect,  bo_Difference.  If  oType=bo_Union,  then the method merges  solid1  and 
solid2 solids;  if  oType=bo_Intersect,  then  the  method  intersects  solid1  and  solid2 solids;  if 
oType=bo_Difference, then the method subtracts solid2 solid from solid1 solid.

names parameter is used to version the Boolean operation.
mergeFaces parameter controls merging of similar faces. If mergeFaces==false, then similar faces are not 

merged.
closed parameter is used only for nonclosed solids and it informs the operation whether it is required to  

check the  result  for  closedness.  For  non-closed  solids,  Boolean  operation  is  executed  by  BooleanShell 
method described in item M.2.2. Boolean Operation on Non-Closed Solids  .

69



In Fig. M.2.1.1, solid1 and solid2 original operand solids are shown.

Fig. M.2.1.1.

In Fig. M.2.1.2, you can see the result of Boolean operation that merges solid1 and solid2 solids shown in 
Figure M.2.1.1.

Fig. M.2.1.2.

In Fig. M.2.1.3, you can see the result of Boolean operation that intersects solid1 and solid2 solids shown 
in Figure M.2.1.1.

70



Fig. M.2.1.3.

In Fig. M.2.1.4, you can see the result of Boolean operation that substracts solid2 solid from solid1 solid; 
they are shown in Figure M.2.1.1.

Fig. M.2.1.4.

In Fig. M.2.1.5, you can see the result of Boolean operation that subtracts solid1 solid from solid2 solid; 
two original solids are shown in Figure M.2.1.1.

71



Fig. M.2.1.5.

In order to demonstrate the use of mergeFaces parameter, let's analyze Boolean operations executed on 
solid1 and solid2 original solids shown in Figure M.2.1.6.

Fig. M.2.1.6.

In Fig. M.2.1.7, you can see result solid that has was constructed by merging solid1 and solid2 solids, 
when the method was  used with mergeFaces==true.  In  Fig.  M.2.1.8,  you can see  result solid  that  was 
constructed  by  merging  solid1  and  solid2 solids,  when  the  method  was  used  with  mergeFaces==false 
parameter. Coinciding faces are not merged in Figure M.2.1.8.

72



Fig. M.2.1.7.

Fig. M.2.1.8.

In Fig. M.2.1.9, you can see  result solid that was constructed by subtracting  solid2 solid from  solid1 
solid, when the method concerned was used with  closed== true parameter. In Fig. M.2.1.10, you can see 
result  solid that was constructed by subtracting solid2 solid from solid1 solid when the method was used 
with closed==false parameter. Coinciding faces are not merged in Figure M.2.1.10.

73



Fig. M.2.1.9.

Fig. M.2.1.10.

Method
MbResultType
BooleanSolid ( MbSolid & solid1,
                          MbeCopyMode sameShell1,
                          MbSolid & solid2,
                          MbeCopyMode sameShell2,
                          OperationType oType,
                          const MbSNameMaker & names,
                          MbSolid *& result )
executes  the  same  actions  as  BooleanResult method  when  mergeFaces==true  and  closed==true. 
BooleanSolid method is applicable to closed solids only.

BooleanResult and  BooleanSolid methods  add  MbBooleanSolid  constructor  in  the  log  of  newly 
constructed solid that contains all data required to execute the operation. MbBooleanSolid constructor is  
declared in cr_boolean_solid.h file.

test.exe test application executes Boolean operations on solids using New ->Solid -> By Gluing to Solid 
-> a Solid, New ->Solid -> By cutting from Solid ->Solid, New ->Solid -> Intersecting with Solid ->Solid 
menu commands.

74



M.2.2. Boolean Operation on Non-Closed Solids

Method
MbResultType
BooleanShell ( MbSolid & solid1,
                          MbeCopyMode sameShell1,
                          MbSolid & solid2,
                          MbeCopyMode sameShell2,
                          OperationType oType,
                          const MbSNameMaker & names,
                          MbSolid *& result )
constructs a new solid by executing a Boolean operation on two given non-closed solids.

Input parameters of the method are as follows:
• solid1 is the first solid for the Boolean operation,
• sameShell1 is copying method for the first solid,
• solid2 is the second solid for the Boolean operation,
• sameShell2 is copying method for the second solid,
• oType is Boolean operation type: bo_Variety is union of solids,

                                                                   bo_Internal is intersection of solids,
                                                                   bo_External is subtraction of solids,

• names is a namer used used for versioning.
Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
The method executes merging, intersecting and subtractiom operations on points of two nonclosed solids 

(solid1 and solid2).  sameShell1 and sameShell2 parameters control transfer of faces, edges and vertices of 
solid1 and solid2 original solids to result constructed solid.

sameShell1  and  sameShell2  parameters  may  take  one  of  the  following  four  values:  cm_Copy, 
cm_KeepSurface,  cm_KeepHistory,  cm_Same.  MbeCopyMode  enumeration  is  described  in  item  O.7.9.
Copying a Set of Faces.

oType  (OperationType) parameter defines Boolean operation type; it  takes one of the following three 
values:  bo_Variety,  bo_Internal,  bo_External.  If  oType=bo_Variety,  then  the  method  merges  surfaces  of 
solid1  and  solid2 solids;  if  oType=bo_Internal,  then the method intersects  surfaces of  solid1  and  solid2 
solids; if  oType=bo_External, then the method subtracts solid2 solid from solid1 solid. names parameter is 
used to version the Boolean operation.

In Fig. M.2.2.1, you can see solid1 and solid2 original non-closed solids.

75



Fig. M.2.2.1.

In Fig. M.2.2.2, you can see the result of Boolean operation that merges  solid1  and  solid2 non-closed 
solids shown in Figure M.2.2.1.

Fig. M.2.2.2.

In  Fig.  M.2.2.3,  you  can  see  the  result  of  non-closed  solids  solid1  and  solid2 truncation  Boolean 
operation cutting shown in Figure M.2.2.1.

76



Fig. M.2.2.3.

In Fig. M.2.2.4, you can see the result of Boolean operation that subtracts solid2 non-closed solid from 
solid1 non-closed solid shown in Figure M.2.2.1.

Fig. M.2.2.4.

In Fig. M.2.2.5, you can see the result of Boolean operation that subtracts solid1 non-closed solid from 
solid2 non-closed solid shown in Figure M.2.2.1.

77



Fig. M.2.2.5.

This method works with non-closed solids, but the second operand may be a closed solid. The method  
executes a Boolean operation having the same name on a set of points on the surfaces of the solids.

BooleanShell method adds MbBooleanSolid constructor in a log of newly constructed solid that contains 
all data required to execute the operation. MbBooleanSolid constructor is declared in cr_boolean_solid.h file.

Test.exe test application executes Boolean operations on solids using New -> Shell -> On Base of Shell -> 
By Merging with Shell, New -> Shell -> On Base of Shell -> By subtracting Shell, New -> Shell -> On Base  
of Shell -> By Limiting by Shell  menu commands.

M.2.3. Boolean Operation on Extrusion Solid

Method
MbResultType
ExtrusionResult ( MbSolid & solid,
                               MbeCopyMode sameShell,
                               const MbSweptData & sweptData,
                               const MbVector3D & direction,
                               ExtrusionValues & params,
                               OperationType oType,
                               const MbSNameMaker & names,
                               PArray<MbSNameMaker> & snames,
                               MbSolid *& result )
constructs an extruded solid and executes Boolean operation on the given solid using the constructed solid.

Input parameters of the method are as follows:
• solid is a solid given for Boolean operation,
• sameShell is copying version for the given solid,
• sweptData contains data on generating curves for construction of extruded solid,
• direction is extrusion direction,
• params are construction parameters,
• oType is Boolean operation type: bo_Union means merging of the solids,

                                                                   bo_Intersect means intersection of the solids,
                                                                   bo_Difference is subtraction of the solids,

• names is operation namer,
• snames are namers for extruded solid faces.

78



Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.The method is declared in action_solid.h file.
This method executes successive merging of the following two methods:  ExtrusionSolid method that 

constructs a solid by extruding  sweptData curves according to given  params parameters in  direction and 
BooleanSolid method that  executes  oType Boolean operation on  solid solid that was constructed on the 
previous step.  ExtrusionSolid method is  described in item  M.1.3.  Constructing an Extrusion Solid  , and 
BooleanSolid method  is  described  in  item  M.2.1.  Boolean  Operation  on  Solids.  sameShell parameter 
controls transfer of faces, edges and vertices from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type;  it  takes one of the following three 
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union then the method merges solid solid and 
the extruded solid; if  oType=bo_Intersect, then the method intersects  solid  solid and the extruded solid; if 
oType=bo_Difference,  then the method subtracts the extruded solid from  solid  solid.  names and snames 
parameters provide naming of the faces for newly constructed solid.

If  the  solid  is  constructed  by  extruding  curves,  then  ExtrusionResult method  provides  the  same 
capabilities as  ExtrusionSolid method: extruded curves may be located in a plane (Figure М.1.3.2), at a 
curved surface (Figure М.1.3.12) or in space (Figure М.1.3.20). Extrusion may be executed in forward, 
backward or both directions; with slope or aclinal faces newly constructed solid may completely fill closed  
curves (Figure М.1.3.13) or have a thin wall (Figure М.1.3.14). We shall not repeat the description of all  
features of the method, we shall rather focus on some features associated with Boolean operations.

In Fig. M.2.3.1, you can see  solid  solid, a generating curve included in  sweptData data and extrusion 
direction.

Fig. M.2.3.1.

In Fig. M.2.3.2, you can see the result of the Boolean operation that merges solid solid and a thin-walled 
solid received by extruding sweptData generating curve according to direction shown in Figure M.2.3.1 for 
predefined distance.

79



Fig. M.2.3.2.

In Fig. M.2.3.3, you can see the result of Boolean operation that merges solid solid and a solid received 
by extrusion of  sweptData generating curve according to  direction shown in Figure M.2.3.1. Generating 
curve  was  extruded  in  backward  direction  without  a  slope  with  «To  Nearest  Objects» option 
(params.side2.way=sw_shell).

80



Fig. M.2.3.3.

In  Fig.  M.2.3.4,  you  can  see  the  result  of  the  Boolean  operation  that  subtracts  a  solid  received  by 
extruding sweptData generating curve from solid solid according to direction shown in Figure M.2.3.1.

Fig. M.2.3.4.

81



In Fig. M.2.3.5, you can see the result of Boolean operation that subtracts a solid received by extrusion of 
sweptData generating curve from solid solid according to  direction shown in Figure M.2.3.1. Generating 
curve  was  extruded  in  backward  direction  without  a  slope  with  «To  Nearest  Objects» option 
(params.side2.way=sw_shell).

Fig. M.2.3.5.

In Fig. M.2.3.6, you can see the result of Boolean operation that intersects solid solid and a solid received 
by extrusion of sweptData generating curve according to direction shown in Figure M.2.3.1.

 

82



Fig. M.2.3.6.

In Fig. M.2.3.7, you can see the result of the Boolean operation that intersects  solid solid and a solid 
received by extruding  sweptData  generating curve according to  direction shown in Figure M.2.3.1. The 
generating curve was extruded in the backward direction without a slope with«To Nearest Objects» option.

Fig. M.2.3.7.

ExtrusionResult method adds MbExtrusionSolid constructor in the log of newly constructed solid that 
contains  all  data  required  to  execute  the  operation.  MbExtrusionSolid  constructor  is  declared  in 
cr_extrusion_solid.h file.

83



test.exe test application executes Boolean operations on the solid recieved by extruding a solid using New 
->Solid -> By Gluing to Solid -> By Extruding Curve, New ->Solid -> Cut from Solid -> By Extruding 
Curve, New ->Solid -> Intersection with Other Solid -> By Extruding Curve menu commands.

M.2.4. Boolean Operation on Revolution Solid

Method
MbResultType
RevolutionResult ( MbSolid & solid,
                                 MbeCopyMode sameShell,
                                 const MbSweptData & sweptData,
                                 const MbAxis3D & axis,
                                 RevolutionValues & params,
                                 OperationType oType,
                                 const MbSNameMaker & names,
                                 PArray<MbSNameMaker> & snames,
                                 MbSolid *& result )
constructs a rotation solid and executes a Boolean operation of determined solid with constructed solid.

Input parameters of the method are as follows:
• solid is a solid given for Boolean operation,
• sameShell is copying version for the given solid,
• sweptData contains data on generating curves for construction of extruded solid,
• axis is a rotation axis,
• params are construction parameters,
• oType is Boolean operation type: bo_Union means merging of the solids,

                                                                   bo_Intersect means intersection of the solids,
                                                                   bo_Difference means subtraction of the solids,

• names is operation namer,
• snames are namers of rotation solid faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.The method is declared in action_solid.h file.
This method executes successive merging of the following two methods:  RevolutionSolid method that 

constructs  a  solid  by  extruding  sweptData curves  according  to  params parameters  in  direction,  and 
BooleanSolid method that  executes  oType Boolean operation on  solid solid that  was constructed in the 
previous step.  RevolutionSolid method is described in item  M.1.4. Constructing a Revolution Solid, and 
BooleanSolid method  is  described  in  item  M.2.1.  Boolean  Operation  on  Solids.  sameShell parameter 
controls transfer of faces, edges and vertices from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type;  it  takes one of the following three 
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union, then the method merges solid solid and 
a revolution solid; if  oType=bo_Intersect, then the method intersects  solid  solid and a revolution solid; if 
oType=bo_Difference,  then the method subtracts  a revolution solid from  solid  solid.  names and snames 
parameters provide naming of the faces for newly constructed solid.

When a solid is constructed by rotating curves, RevolutionResult method provides the same possibilities 
as RevolutionSolid method: rotated curves may be located in a plane (Figure М.1.4.2), in a curved surface 
(Figure М.1.4.9) or in space (Figure М.1.4.16); it may be rotated in forward direction, backward direction or  
both directions; newly constructed solid may completely fill closed curves (Figure М.1.4.10) or it may have 
a thin wall (Figure М.1.4.11). We shall not repeat the description of all features of the method, we shall  
rather focus on some features associated with Boolean operations.

In Fig. M.2.4.1, you can see solid solid, generating curve included in sweptData data and axis rotation 
axis.

84



Fig. M.2.4.1.

In Fig. M.2.4.2, you can see the result of Boolean operation that merges  solid solid and a thin-walled 
solid received by rotation of sweptData curve around axis shown in Figure M.2.4.1.

Fig. M.2.4.2.

In Fig. M.2.4.3, you can see the result of Boolean operation that merges  solid solid and a thin-walled 
solid received by rotation of  sweptData  curve around  axis shown in Figure M.2.4.1. Generating curve is 
rotated in backward direction with To Surface option (params.side2.way=sw_surface).

85



Fig. M.2.4.3.

In Fig. M.2.4.4, you can see the result of Boolean operation that subtracts a solid received by rotating 
sweptData generating curve around axis from solid solid shown in Figure M.2.4.1.

86



Fig. M.2.4.4.

In Fig. M.2.4.5, you can see the result of Boolean operation that subtracts a solid received by rotating 
sweptData  generating curve around  axis  from  solid solid shown in Figure M.2.4.1. Generating curve is 
rotated in backward direction with To Surface option (params.side2.way=sw_surface).

87



Fig. M.2.4.5.

In Fig. M.2.4.6, you can see the result of Boolean operation that intersects solid solid and a solid received 
by rotating sweptData generating curve around axis shown in Figure M.2.4.1.

Fig. M.2.4.6.

88



In Fig. M.2.4.7, you can see the result of Boolean operation that intersects solid solid and a solid received 
by rotating sweptData generating curve around axis shown in Figure M.2.4.1. Generating curve is rotated in 
backward direction with To Surface option (params.side2.way=sw_surface).

Fig. M.2.4.7.

RevolutionResult method adds MbRevolutionSolid constructor in the log of newly constructed solid that 
contains  all  data  required  to  execute  the  operation.  MbRevolutionSolid  constructor  is  declared  in  
cr_revolution_solid file.

test.exe test application executes a Boolean operation on constructed solid using New ->Solid -> Attach to 
Other Solid -> Curve Rotation, New ->Solid -> Cut from Other Solid -> Curve Rotation, New ->Solid -> 
Intersection with Other Solid -> Curve Rotation menu commands.

M.2.5. Boolean Operation on Swept Solid

Method
MbResultType
EvolutionResult ( MbSolid & solid,
                               MbeCopyMode sameShell,
                               const MbSweptData & sweptData,
                               const MbCurve3D & spine,
                               EvolutionValues & params,
                               OperationType oType,
                               const MbSNameMaker & names,
                               PArray<MbSNameMaker> & cnames,
                               const MbSNameMaker & snames,
                               MbSolid *& result )
constructs a swept solid and executes a Boolean operation on newly given solid with newly constructed 

89



solid.
Input parameters of the method are as follows:

• solid is a solid given for Boolean operation,
• sameShell is copying version for the given solid,
• sweptData contains data on generating curves for construction of extruded solid,
• spine is guiding curve,
• params are construction parameters,
• oType is Boolean operation type: bo_Union means merging of the solids,

                                                                   bo_Intersect means intersection of the solids,
                                                                   bo_Difference means subtraction of the solids,

• names is face namer,
• cnames are namers of swept solid faces,
• snames is guiding line namer.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method executes successive merging of the following two methods:  EvolutionSolid method that 

constructs a solid by moving sweptData curves along spine guiding curve using set params parameters and 
BooleanSolid method that  executes  oType Bollean operation on  solid solid  that  was constructed in  the 
previous  step.  EvolutionSolid method  is  described  in  item  M.1.5.  Constructing  a  Swept  Solid  , and 
BooleanSolid method  is  described  in  item  M.2.1.  Boolean  Operation  on  Solids  . sameShell parameter 
controls transfer of faces, edges and vertices from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item .O.7.9. Copying a Set of Faces

oType  (OperationType) parameter defines Boolean operation type; it  takes one of the following three 
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union, then the method merges solid solid and 
the  swept  solid;  if  oType=bo_Intersect,  then  the  method  intersects  solid solid  and  the  swept  solid;  if 
oType=bo_Difference, then the method subtracts the swept solid from solid solid. names, cnames and snames 
parameters provide face naming for newly constructed solid.

When EvolutionResult method constructs solids by moving curves, it provides the same possibilities as 
EvolutionSolid method: guiding curves may be located in a plane (Figure М.1.5.2),  in a curved surface 
(Figure М.1.5.8), or in space (Figure М.1.5.16); the solid may completely fill closed curves (Figure М.1.5.9) 
or it may have a thin wall (Figure М.1.5.10). We shall not repeat the description of all features of the method,  
we shall rather focus on some features associated with Boolean operations.

In Fig. M.2.5.1, you can see solid solid, a generating curve included in sweptData data and spine guiding 
curve.

90



Fig. M.2.5.1.

In Fig. M.2.5.2, you can see the result of the Boolean operation that merges solid and the solid received 
by moving sweptData generating curve along spine guiding curve shown in Figure M.2.5.1.

Fig. M.2.5.2.

In Fig. M.2.5.3, you can see the result of Boolean operation that subtracts the solid received by moving 
sweptData generating curve along spine guiding curve from solid solid shown in Figure M.2.5.1.

91



Fig. M.2.5.3.

In Fig. M.2.5.4, you can see the result of Boolean operation that merges solid solid and the solid received 
by moving sweptData generating curve along spine guiding curve shown in Figure M.2.5.1.

Fig. M.2.5.4.

EvolutionResult method adds MbEvolutionSolid constructor to the log of newly constructed solid that 
contains  all  data  required  to  execute  the  operation.  MbEvolutionSolid  constructor  is  declared  in 
cr_evolution_solid.h file.

test.exe test application executes Boolean operations on constructed swept solid using New ->Solid -> 
Attach to Other Solid -> By Moving Curve, New ->Solid -> Cut from Other Solid -> By Moving a Curve,  
New ->Solid -> By Intersection with Other Solid -> By Moving a Curve menu commands.

M.2.6. Boolean Operation with a Solid Constructed on Base of Flat Sections 

Method

92



MbResultType
LoftedResult ( MbSolid & solid,
                          MbeCopyMode sameShell,
                          SArray<MbPlacement3D> & places,
                          RPArray<MbContour> & contours,
                          const MbCurve3D * spine,
                          LoftedValues & params,
                          OperationType oType,
                          Sarray<MbCartPoint3D> * points,
                          const MbSNameMaker & names,
                          PArray<MbSNameMaker> & snames,
                          MbSolid *& result )
constructs a solid based on flat sections and executes Boolean operation on the specified solid with newly 
constructed solid.

Input parameters of the method are as follows:
• solid is a solid given for Boolean operation,
• sameShell is copying version for the given solid,
• places is a set of local coordinate systems for generating contours,
• contours is a set of generating contours,
• spine is a guiding curve (it may be missing),
• params are construction parameters,
• oType is Boolean operation type: bo_Union means merging of the solids,

                                                                   bo_Intersect means intersection of the solids,
                                                                   bo_Difference means subtraction of the solids,

• points is a set of control points (it may be missing),
• names is face namer,
• snames are namers of generating contours.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This  method  executes  successive  merging  of  the  following  two  methods:  LoftedSolid method  that 

constructs a solid based on  contours flat sections at  places planes taking into account  params parameters 
and BooleanSolid method that executes oType Boolean operation of solid solid that was constructed in the 
previous step.  LoftedSolid method is described in item M.1.6. Constructing a Solid by Flat Sections, and 
BooleanSolid method  is  described  in  item  M.2.1.  Boolean  Operation  on  Solids.  sameShell parameter 
controls transfer of faces, edges and vertices from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type;  it  takes one of the following three 
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union then the method merges solid solid and 
the  swept  solid;  if  oType=bo_Intersect,  then  the  method  intersects  solid  solid  and  the  swept  solid;  if 
oType=bo_Difference, then the method subtracts the swept solid from solid solid. names, cnames and snames 
parameters provide face naming for newly constructed solid.

When LoftedResult method constructs solids based on flat sections, it provides the same possibilities as 
LoftedSolid method:  constructed  solid  may  be  built  as  non-closed  (Figure  М.1.6.3)  or  as  closed  one 
(Figure М.1.6.4); the solid may have various shapes near the ends (Figure М.1.6.5 and Figure М.1.6.6); the 
solid may completely fill the closed curves (Figure М.1.6.3) or it may have a thin wall (Figure М.1.6.6);  
solid shape in sections can be controlled by a guiding line (Figure М.1.6.15 and Figure М.1.6.16). We shall  
not repeat the description of all features of the method, we shall rather focus on some features associated  
with Boolean operations.

In Fig. M.2.6.1, you can see solid solid and closed guiding curves.

93



Fig. M.2.6.1.

In Fig. M.2.6.2, you can see the result of Boolean operation that merges solid solid and the solid that was 
constructed based on contours flat sections shown in Figure M.2.6.1.

Fig. M.2.6.2.

In Fig. M.2.6.3, you can see the result of Boolean operation that subtracts the solid that was constructed 
based on contours flat sections from solid solid shown in Figure M.2.6.1.

94



Fig. M.2.6.3.

In Fig. M.2.6.4, you can see the result of the Boolean operation that merges solid solid and the solid that 
was constructed based on contours flat sections shown in Figure M.2.6.1.

Fig. M.2.6.4.

95



LoftedResult method adds MbLoftedSolid constructor in the log of newly constructed solid that contains 
all data required to execute the operation. MbLoftedSolid constructor is declared in cr_lofted_solid.h file.

test.exe test application executes a Boolean operation with the solid constructed based on flat sections 
using New ->Solid -> Attach to Other Solid -> By Sections, New ->Solid -> Attach to Other Solid -> By 
Sections and Generating Curve, New ->Solid -> Cut from Other Solid -> By Sections, New ->Solid -> Cut  
from Other Solid -> By Sections and Generating Curve, New ->Solid -> Intersection with Other Solid -> By 
Sections, New ->Solid -> Intersection with Other Solid -> By Sections menu commands.

M.2.7. Cutting a Solid by a Surface

Method
MbResultType
SolidCutting ( MbSolid & solid,
                         MbeCopyMode sameShell,
                         const MbSurface & surface,
                         int part,
                         const MbSNameMaker & names,
                         bool closed,
                         MbSolid *& result )
cuts off part of the solid by a surface that intersects it.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• surface is the intersecting surface,
• part is a part of the solid that should be kept:

                        if part = +1 then the part of the solid above the surface should be kept,
                        if part = 0 then all parts of the solid should be kept,
                        if part = –1 then the part of the solid under the surface should be kept,

• names is cut face namer,
• closed is a flag indicating whether the solid is closed in the operation:

                                     true means that the solid is considered to be closed,
                                      false means that the solid is considered to be non-closed.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
The method constructs  a  non-closed shell  with one face based on cutting  surface and it  executes  a 

Boolean operation that intersects solid original solid with a non-closed shell. To execute the operation, the 
cutting surface should fully intersect the original solid. sameShell parameter controls transfer of faces, edges 
and vertices from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

part parameter defines the part of solid original solid to be kept: if part=+1, then the part located above 
the surface will be kept (on the other side, which is directed normal to the surface); if part=–1, then the part 
located  under  the  surface  will  be  kept;  if  part=0,  then  the both  parts  of  the  solid  will  be  kept.  names  
parameter is used to name the faces of the constructed solid. closed parameter defines whether solid original 
solid is closed or non-closed.

If  closed=true, then the operation is executed on a set of points inside the solid and on its surface. If  
closed=false, then the operation is executed on a set of points located on solid surface.

In Fig. M.2.7.1, you can see solid original solid and cutting surface.

96



Fig. M.2.7.1.

In Fig. M.2.7.2, you can see result constructed solid if part=+1 and closed=true. In Fig. M.2.7.3, you can 
see result constructed solid if part=–1 and closed=true.

Fig. M.2.7.2.                                                                       Fig. M.2.7.3.

97



In Fig. M.2.7.4, you can see result constructed solid if part=+1 and closed=false.

Fig. M.2.7.4.

If  part=0, then method constructs  result  solid which contains all cutted parts of initial solid. Method 
DetachParts or CreateParts can to detach part of result solid. Methods DetachParts and CreateParts are 
described in item M.2.19. Divide a Solid to Disconnected Parts

Method 
MbResultType 
SolidCutting ( MbSolid & solid, 
MbeCopyMode sameShell, 
const MbSurface & surface, 
const MbSNameMaker & names, 
bool closed, 
RPArray<MbSolid> & result )
constructs all parts of initial solid if part=0.

Method has the same parameters besides  part. In Fig. M.2.7.5, you can see result  constructed solids if 
closed=true.

98



Fig. M.2.7.5.

SolidCutting methods  adds  MbCuttingSolid  constructor  in  the  log  of  newly  constructed  solid  that 
contains  all  data  required  to  execute  the  operation.  MbCuttingSolid  constructor  is  declared  in 
cr_cutting_solid.h file.

test.exe test  application cuts solid with a surface using New ->Solid -> Based on Solid -> Cut with 
Surface and New -> Shell -> Based on Shell -> Cut with Surface menu commands.

M.2.8. Cutting a Solid by a Flat Contour

Method
MbResultType
SolidCutting ( MbSolid & solid,
                         MbeCopyMode sameShell,
                         const MbPlacement3D & place,
                         const MbContour & contour,
                         const MbVector3D & direction,
                         int part,
                         const MbSNameMaker & names,
                         bool closed,
                         MbSolid *& result )
cuts off a part of a solid (constructed by extruding a flat contour) by a surface that intersects the solid.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• place is a local coordinate system of generating contour,
• contour is the generating contour,
• direction is extrusion direction of the generating contour,
• part is a part of the solid that should be kept:

                         if part = +1, then the part of the solid above the surface should be kept,
                         if part = 0, then all parts of the solid should be kept, 
                         if part = –1, then the part of the solid under the surface should be kept,

• names is cut face namer,
• closed is a flag indicating whether the solid is closed in the operation:

                                     true means that the solid is considered to be closed,

99



                                     false means that the solid is considered to be non-closed.
Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method constructs a non-closed shell by extruding two-dimensional  contour in  direction of XY 

plane of  place local coordinate system, and executes Boolean operation that intersects  solid original solid 
with non-closed shell. If  direction vector is equal to zero, then the contour is extruded along place.axisZ 
vector. To execute the operation, the cutting contour should fully intersect with the projection of the original  
solid in XY plane in  place local coordinate system in the direction of extrusion vector. Contour extrusion 
length is calculated so that non-closed shell would fully intersect the original solid.  sameShell parameter 
controls transfer of faces, edges and vertices from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in itemO.7.9. Copying a Set of Faces.

part parameter defines the part of solid original solid to be kept: If part=+1, then the part of the solid to 
the right of the contour is to be kept; if part=–1, then the part of the solid to the left of the contour is to be 
kept (as viewed along the contour towards place.axisZ). names parameter is used to name the faces of the 
constructed solid. closed parameter defines whether solid original solid is closed or non-closed.

If  closed=true, then the operation is executed on a set of points inside the solid and on its surface. If  
closed=false, then the operation is executed on a set of points located on solid surface.

In Fig. M.2.8.1, you can see  solid original solid,  contour cutting contour and XY plane of  place local 
coordinate system.

Fig. M.2.8.1.

In Fig. M.2.8.2, you can see result constructed solid when part=+1 and closed=true. In Fig. M.2.8.3, you 
can see result constructed solid, when part=–1 and closed=true.

100



Fig. M.2.8.2.                                            Fig. M.2.8.3.

In Fig. M.2.8.4, you can see result constructed solid, when part=+1 and closed=false.

Fig. M.2.8.4.

If  part  = 0, then method constructs  result  solid which contains all cutted parts of initial solid. Method 
DetachParts or CreateParts can to detach part of result solid. Methods DetachParts and CreateParts are 
described in item M.2.19. Divide a Solid to Disconnected Parts.

Method 
MbResultType 
SolidCutting ( MbSolid & solid, 
MbeCopyMode sameShell, 
const MbPlacement3D & place, 
const MbContour & contour, 
const MbVector3D & direction, 
const MbSNameMaker & names, 

101



bool closed, 
RPArray<MbSolid> & result )
constructs all parts of initial solid if part=0. Method has the same parameters besides part. In Fig. M.2.8.5, 
you can see result constructed solids if closed=true.

Fig. M.2.8.5.

SolidCutting methods  adds  MbCuttingSolid  constructor  in  the  log  of  newly  constructed  solid  that 
contains  all  data  required  to  execute  the  operation.  MbCuttingSolid  constructor  is  declared  in 
cr_cutting_solid.h file.

test.exe test application cuts a solid with a surface using New ->Solid -> Based on Solid -> Cut with  
Curve and New -> Shell -> Based on Shell -> Cut with Curve menu commands.

M.2.9. Constructing a Symmetrical Solid

Method
MbResultType
SymmetrySolid ( MbSolid & solid,
                              MbeCopyMode sameShell,
                              const MbPlacement3D & place,
                              const MbSNameMaker & names,
                              MbSolid *& result )
constructs a symmetrical solid with a given symmetry plane.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• place is a local coordinate system, its XY plane is a symmetry plane,
• names is cut face namer.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
The method constructs a symmetrical solid with a specified symmetry plane as follows.  solid original 

solid is cut by XY plane of  place local coordinate system; the part of the original solid located below the 
cutting plane is taken; a mirrored copy of the selected part of the original solid is constructed and merged 

102



with the selected part of the original solid. sameShell parameter controls transfer of faces, edges and vertices 
from solid original solid to result constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

In Fig. M.2.9.1, you can see solid original solid and place symmetry plane.

Fig. M.2.9.1.

In Fig. M.2.9.2, you can see result constructed solid.

Fig. M.2.9.2.

In Fig. M.2.9.3, you can see result solid constructed for symmetry plane with an opposite normal.

103



Fig. M.2.9.3.

If solid original solid does not touch XY plane of place local coordinate system, then the construction is 
not executed. In the latter case you can use MirrorSolid method to construct a symmetrical solid.

SymmetrySolid method adds MbSymmetrySolid constructor in the log of newly constructed solid that  
contains  all  data  required  to  execute  the  operation.  MbSymmetrySolid  constructor  is  declared  in 
cr_symmetry_solid.h file.

test.exe  test  application  constructs  a  symmetrical  solid  using  New  ->Solid  ->  Based  on  Solid  -> 
Symmetrical menu command.

M.2.10. Rounding-off Solid Edges

Method
MbResultType
FilletSolid ( MbSolid   & solid,
                     MbeCopyMode sameShell,
                     RPArray<MbCurveEdge> & edges,
                     RPArray<MbFace> & bounds,
                     const SmoothValues & params,
                     const MbSNameMaker & names,
                     MbSolid *& result )
rounds off specified edges in a copy of the original solid.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• edges is a set of rounded-off edges.
• bounds is a set of faces used to cut rounded-off edges (the set may be empty),
• params are construction parameters,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method replaces specified edges of the original  solid with rounded-off  faces in order to ensure  

smooth mating of adjacent faces of specified edges. When edges are rounded-off, the mating faces may have  
a shape of circle arc, ellipse, hyperbola or parabola in a cross-section.

solid parameter contains the original solid, its edges should be processed. sameShell parameter controls 

104



transfer of faces, edges and vertices from solid original solid to result resulting solid.
sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 

cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.
edges parameter contains processed edges of solid solid. bounds parameter contains faces of solid solid 

that should be used to trim rounding-off in an ambiguous situation. names parameter provides naming of 
mating faces.

params rounding-off  parameters  contain  data  on  the  form and  mating  method  of  adjacent  faces  of  
processed edges, please see Figure M.2.10.1. SmoothValues class is described in shell_parameter.h file.

Fig. M.2.10.1.

params input parameter contains the following data:
• distance1 is the first rounding-off radius,
• distance2 is the second rounding-off radius,
• conic is a shape coefficient of the mating surface,
• begLength is the distance from the starting vertex to mating end point (a negative value means that 

end point is missing),
• endLength is the distance from end vertex to mating end point (a negative value means that the end 

point is missing),
• form is mating type from an enumeration MbeSmoothForm,
• smoothCorner is rounding-off method for suitcase corners,
• prolong is a flag indicating that rounding-off is continued at tangent edges,
• autoSurface is a flag for automatic edge-keeping determination,
• keepCant is a flag for edge keeping,
• strict is construction "strictness" flag: if it is equal to false, then try to round-off everything that is  

possible,
• equable is a flag for insertion of a toroidal surface at joining corners of a mating surface,
• vector1 is a vector of normal to the mating end plane in the beginning,
• created vector2 is a vector of normal to the mating end plane in the end.

105



form parameter defines rounding-off type. If  form is equal to st_Fillet or st_Span, then the edges are 
rounded-off; any other value of form is not used by this method. If form=st_Fillet, then the method constructs 
a  rounding-off  surface  with  predetermined  radii  that  define  distance1  and  distance2  parameters.  In 
Fig. M.2.10.2, you can see a rounding-off with specified edge radii; this edge joins two cylindrical surfaces.

Fig. M.2.10.2.

If distance1=distance2 and conic=0, then the rounding-off surface is constructed by moving a sphere that 
touches two adjacent  faces of rounded-off edge. Reference edges of mating faces are located at contact  
points of the sphere and corresponding adjacent face. A cross-section of mating face is a circular arc. In  
Fig. M.2.10.3, you can see a fillet with specified equal edge radii; this edge joins two cylindrical surfaces.

Fig. M.2.10.3.

conic coefficient defines the shape of rounding-off surface. If conic=0 (_ARC_ macros), then the section 
of the mating surface is a circular arc or an ellipse with predetermined radii. Shape coefficient can be equal  
to zero or it can range from 0.05 to 0.95. If conic=0.5, then rounding-off face cross-section is a parabolic arc. 
If  conic>0.5, then rounding-off face cross-section is a hyperbolic arc. If  conic<0.5, then rounding-off face 
cross-section is an elliptical arc. In Fig. M.2.10.4 and M.2.10.5, you can see rounding-offs with equal radii of 
the edge joining two cylindrical surfaces with different shape coefficients.

106



Fig. M.2.10.4.

Fig. M.2.10.5.

If form=st_Span, then the method constructs a rounding-off surface with a specified chord. distance1 and 
distance2 are equal, they determine the distance between the reference edges of the mating face. Rounding-
off face cross-section is a circular arc. In general case, arc radii are different in every rounding-off face cross-
section and distance1 and distance2 parameters are equal to the chord of the circular arc. In Fig. M.2.10.6, 
you can see a rounding-off with specified edge chord; the edge joins two cylindrical surfaces.

107



Fig. M.2.10.6.

In Fig. M.2.10.6, you can see a rounding-off with specified edge chord having non-zero shape coefficient;  
the edge joins two cylindrical surfaces.

Fig. M.2.10.7.

In Fig. M.2.10.8, you can see an example of rounding-off stop located begLength away from start vertex 
and  endLength away from end vertex. If there is no need to stop mating, then  begLength and  endLength 
should take negative values. By default, the stop of the fillet edges is perpendicular to the fillet edge. You can  
override the behavior stops fillets using vector vector1 as the normal stopping faces at the beginning of the 
pairing and the vector vector2 as the normal stopping faces at the end of the pairing.

108



Fig. M.2.10.8.

Let's look at the solid shown in Figure M.2.10.9 as an example and demonstrate how to use  prolong, 
autoSurface and keepCant flags when an edge highlighted in Figure M.2.10.9 is rounded-off.

Fig. M.2.10.9.

prolong flag determines what edges should be processed. If  prolong=false, then only edges from edges 
container should be processed (Figure M.2.10.10).

109



Fig. M.2.10.10.

if  prolong=true, then edges from  edges container should be processed, as well as the edges smoothly 
joined with them (Figure M.2.10.11).

Fig. M.2.10.11.

autoSurface and keepCant flags are used to handle situations when reference edges of the face fall beyond 
the adjacent face. If  autoSurface=false and keepCant=false, then in situations when reference edges of the 
face go beyond an adjacent face with an acute edge, the mating face keeps its original shape and it is cut off  
by the adjacent face, see Figure M.2.10.11. If  autoSurface=true or  keepCant=true, then in situations when 
face reference edge goes beyond the adjacent face with an acute edge, the mating face changes its shape and 
goes by its reference edge along the boundary, keeping it unchanged as shown in Figure M.2.10.12.

110



Fig. M.2.10.12.

If  autoSurface=true  and  keepCant=false,  then  if  reference  edges  of  the  mating  face  go  beyond  the 
adjacent  face via a smooth edge,  then the mating face replaces the adjacent  face with its  neighbor and  
changes its shape in this section as shown in Figure M.2.10.13.

Fig. M.2.10.13.

In Fig. M.2.10.14, you can see rounding-off of four edges created by a single call of this method with 
equable=false flag.

111



Fig. M.2.10.14.

In Fig. M.2.10.15, you can see rounding-off of four edges created by a single call of this method with 
equable=true; this flag indicates the need to insert toroidal surfaces at the joining corners of mating surfaces.

Fig. M.2.10.15.

If three edges mating in a single vertex are rounded-off, then smoothCorner determines suitcase corners 
rounding-off processing method. If smoothCorner=ec_pointed, then the corners where three edges with the 
same convexity are mating are not processed, see Figure M.2.10.16.

112



Fig. M.2.10.16.

If smoothCorner=ec_uniform, then corners that join three edges with different convexities are processed 
using the same method as shown in Figure M.2.10.17.

Fig. M.2.10.17.

If  smoothCorner=ec_sharp,  then corners  that  join three edges with different  convexity are  processed 
using the same method as shown in Figure M.2.10.18.

113



Fig. M.2.10.18

If  smoothCorner=ec_either,  then the corners  that  join  three edges with different  convexities  may be 
processed using different methods.

In an ambiguous situation  bounds parameter contains faces of  solid solid that should be used to trim 
rounding-off faces. An example of using bounds parameter is given in Figures M.2.10.19 and M.2.10.20.

Fig. M.2.10.19

114



Fig. M.2.10.20

bounds parameter may be used to stop mating faces in the beginning and in the end. In this case, the 
edges defined by bounds parameter should belong to solid original solid.

In Fig. M.2.10.21, you can see a model, for which edge rounding-offs that completely cover the hole and 
the protrusion should be constructed.

Fig. M.2.10.21

115



A rounding-off with avoidance of obstacles is shown in Figure M.2.10.22.

Fig. M.2.10.22

In Fig. M.2.10.23, you can see simultaneous rounding-off of six edges having a common vertex.

Fig. M.2.10.23

In Fig. M.2.10.24 you can see simultaneous rounding-off of several groups of four edges with common 
vertices.  Rounding-off  feature  is  that  the  groups  are  linked  with  each  other  and  can  be  processed 

116



simultaneously only. Original solid for the solid shown in Figure M.2.10.24 was constructed by subtracting 
four cylinders with axes coinciding with cube diagonals from a cube.

Fig. M.2.10.24

If rounding-off based on edges is constructed, then the method adds MbFilletSolid constructor in the log 
of newly constructed solid. The constructor is declared in cr_fillet_solid.h file.

test.exe test application processes the edges of the solid using New ->Solid -> By Processing Edges -> 
Round-off by Radius and New ->Solid -> By Processing Edges -> Round-off by Chord menu commands.

M.2.11. Rounding-off Edges of the Solid Using Variable Radius

Method
MbResultType
FilletSolid ( MbSolid & solid,
                     MbeCopyMode sameShell,
                     SArray<MbEdgeFunction> & edges,
                     RPArray<MbFace> & bounds,
                     const SmoothValues & params,
                     const MbSNameMaker & names,
                     MbSolid *& result )
rounds-off specified edges in a copy of original solid using a variable radius.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,

117



• edges is the set of rounding-off edges with specified radius change methods.
• bounds is a set of faces used to cut rounded-off edges (the set may be empty),
• params are construction parameters,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method replaces specified edges of the original  solid with rounded-off  faces in order to ensure  

smooth mating of adjacent faces of specified edges. When the edges are rounded-off, the mating faces may 
have the shape of a circular arc with variable radius. The method is similar to the method described in the  
preceding item, the difference is the third parameter: edges.

solid parameter contains the original solid, its edges should be processed. sameShell parameter controls 
transfer of faces, edges and vertices from solid original solid to result resulting solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

bounds parameter contains faces of solid solid that should be used to trim rounding-off in an ambiguous 
situation. names parameter provides naming of mating faces.

params rounding-off  parameters  contain  data  on  the  form and  mating  method  of  adjacent  faces  of  
processed edges, please see Figure M.2.10.1. SmoothValues class is described in shell_parameter.h file.
params input parameter contains the following data:

• distance1 is the first rounding-off radius,
• distance2 is the second rounding-off radius,
• conic is a shape coefficient of the mating surface,
• begLength is the distance from the starting vertex to mating end point (a negative value means that 

end point is missing),
• endLength is the distance from end vertex to mating end point (a negative value means that the end 

point is missing),
• form is mating type from an enumeration MbeSmoothForm,
• smoothCorner is rounding-off method for suitcase corners,
• prolong is a flag indicating that rounding-off is continued at tangent edges,
• autoSurface is a flag for automatic edge-keeping determination,
• keepCant is a flag for edge keeping,
• strict is construction "strictness" flag: if it is equal to false, then try to round-off everything that is  

possible,
• equable is a flag for insertion of a toroidal surface at joining corners of a mating surface,
• vector1 is a vector of normal to the mating end plane in the beginning,
• created vector2 is a vector of normal to the mating end plane in the end.

edges parameter contains processed edges of solid solid and the function of radius change along the edge. 
Each element of edges set consists of a pointer to an edge and a pointer to a scalar function, its values should 
be  multiplied  by  the  first  and  second  rounding-off  radii  (distance1  and  distance2),  see  shown  Figure 
M.2.11.1.

Fig. M.2.11.1.

form parameter defines rounding-off type. If  form parameter is equal to st_Fillet or st_Span, then the 
edges of variable radius are rounded-off; any other values of  form are not used by the method. For each 

118



point of  processed  edges[i].edge->Point(t,point),  curvature  radii  of  rounding-off  surface  are  equal  to 
distance1  and  distance2  parameters  multiplied  by  edges[i].function->Value(t)  function  value.  In  Fig. 
M.2.11.2, you can see a rounding-off with variable radii of rectangular prism edge. If  distance1=distance2 
and conic=0, then rounding-off surface is constructed by moving the sphere of variable radius that touches 
two adjacent faces of the rounded-off edge. Reference edges of mating faces are located at contact points of  
the sphere and corresponding adjacent face. A cross-section of mating face is a circular arc.

Fig. M.2.11.2.

In Fig. M.2.11.3, you can see an elliptical rounding-off with variable radii for rectangular prism edge.

119



Fig. M.2.11.3.

conic coefficient defines the shape of rounding-off surface. If conic=0 (_ARC_ macros), then the section 
of the mating surface is a circular arc or an ellipse with predetermined radii. Shape coefficient can be equal  
to zero or it can range from 0.05 to 0.95. If conic=0.5, then rounding-off face cross-section is a parabolic arc. 
If  conic>0.5, then rounding-off face cross-section is a hyperbolic arc. If  conic<0.5, then rounding-off face 
cross-section is an elliptical arc. In Fig. M.2.11.4 and M.2.11.5, you can see rounding-off with variable radii  
for rectangular prism edge with various form factors.

120



Fig. M.2.11.4.

Fig. M.2.11.5.

121



In Fig. M.2.10.6, you can see rounding-off stopping points located begLength away from start vertex and 
endLength away from end vertex. When settings of stop rounding-off are configured, the method used to 
change curvature radii is set for the whole edge. If there is no need to stop mating, then  begLength and 
endLength should take negative values.

Fig. M.2.11.6.

prolong flag determines what edges should be processed. If  prolong=false, then only edges from edges 
container should be processed. If prolong=true, then edges from edges container should be processed, as well 
as edges smoothly joined with them. In order to continue rounding-off edges, radius changing method takes 
a constant value equal to function value at the edge of the previous smoothly jointed edges. In Fig. M.2.11.7,  
you can see the original solid, edges that should be rounded-off, and radius change method for specified  
edges.

122



Fig. M.2.11.7.

In Fig. M.2.11.8, you can see the result of operation for the method for the original solid and the method 
used to change the radius of edges shown in Figure M.2.11.7. In Fig. M.2.11.8, you can see that at the edges,  
radius changing method was picked up to ensure smooth matching with adjacent rounding-off edge.

Fig. M.2.11.8.

autoSurface, keepCant and equable flags are not used in the method.
If three edges mating in a single vertex are rounded-off, then smoothCorner determines suitcase corners 

rounding-off processing method. If smoothCorner=ec_pointed, then the corners where three edges with the 
same convexity are mating are not  processed,  see Figure M.2.10.16.  If  smoothCorner=ec_uniform, then 
corners that join three edges with different convexities are processed using the same method as shown in  
Figure M.2.10.17. If smoothCorner=ec_sharp, then corners that join three edges with different convexity are 
processed  using  the  same  method  as  shown in  Figure  M.2.10.18.  If  smoothCorner=ec_either,  then  the 

123



corners that join three edges with different convexities may be processed using different methods. If the  
functions used to change curvature radius at the edges of rounding-off faces do not coincide, then these  
functions are modified to ensure smooth mating of rounding-off faces.

In an ambiguous situation  bounds parameter contains faces of  solid solid that should be used to trim 
rounding-off faces. An example of using bounds parameter is given in Figures M.1.20.19 and M.1.20.20.

bounds parameter may be used to stop mating faces in the beginning and in the end. In this case, the 
edges defined by bounds parameter should belong to solid original solid.

If rounding-off based on edges is constructed, then the method adds MbFilletSolid constructor in the log 
of newly constructed solid. The constructor is declared in cr_fillet_solid.h file.

test.exe test application processes the edges of the solid using New ->Solid -> By Processing Edges -> 
Variable Rounding-off menu command.

M.2.12. Constructing a Solid with Edge Chamfers

Method
MbResultType
ChamferSolid ( MbSolid & solid,
                           MbeCopyMode sameShell,
                           RPArray<MbCurveEdge> & edges,
                           const SmoothValues & params,
                           const MbSNameMaker & names,
                           MbSolid *& result )
constructs chamfers at specified edges in a copy of the original solid.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is original solid copying option,
• edges is a set of rounded-off edges,
• params are construction parameters,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
This method replaces the specified edges of the original solid with chamfer faces.
The method is declared in action_solid.h file.
The method replaces specified edges of the original solid with chamfer faces.
solid parameter contains the original solid, its edges should be processed. sameShell parameter controls 

transfer of faces, edges and vertices from solid original solid to result resulting solid.
sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 

cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.
edges parameter contains processed edges of  solid solid. names parameter provides naming of chamfer 

faces.
To  construct  edge  chamfers  and  fillets  the  same  SmoothValues  and  params parameters  are  used, 

see Figure M.1.20.1. SmoothValues class is described in shell_parameter.h file.  params parameters used to 
create  a  chamfer  contain  data  on  the  form and  mating  method  for  adjacent  faces  of  processed  edges.  
The following data from params parameter are used to construct chamfers:

• distance1 is the first chamfer side,
• distance2 is the second chamfer side,
• begLength is the distance from the starting vertex to mating end point (a negative value means that 

end point is missing),
• endLength is the distance from end vertex to mating end point (a negative value means that the end 

point is missing),
• form is mating type from an enumeration MbeSmoothForm,
• smoothCorner is rounding-off method for suitcase corners,
• prolong is a flag indicating that rounding-off is continued at tangent edges,

124



• vector1 is a vector of normal to the mating end plane in the beginning,
• vector2 is a vector of normal to the mating end plane at the end.

conic, autoSurface, keepCant, strict, and equable values are not used to construct a chamfer.
form parameter controls the method that is used to describe the chamfer. Values of the  form parameter 

equal to st_Chamfer, st_Slant1 and st_Slant2 are used to construct edge chamfers. If form=st_Fillet, then the 
method constructs chamfer surface with predetermined sides that define distance1 and distance2 parameters. 
M.2.12.1.

Fig. M.2.12.1.

If form=st_Slant1, then the method constructs a chamfer face for the specified leg and its adjacent angle. 
The leg defines distance1 parameter, and distance2 corresponds to the leg belonging to the adjacent angle; 
see Figure M.2.12.2.

Fig. M.2.12.2.

If form=st_Slant2, then the method constructs a chamfer surface with specified angle and adjoining side.  

125



distance1  corresponds  to  the  side  providing  the  specified  angle,  and  distance2  parameter  defines  the 
adjoining side, see Figure M.2.12.3.

Fig. M.2.12.3.

In Fig. M.2.12.4, you can see chamfer stopping example with stopping points begLength away from start 
vertex and endLength away from the end vertex of the processed edge. If there is no need to stop mating,  
then begLength and endLength should take negative values.

Fig. M.2.12.4.

Let's take the solid shown at Figure M.2.12.5 as an example to demonstrate how to use prolong flag to 
construct a chamfer for the edge highlighted in Figure M.2.12.5.

126



Fig. M.2.12.5.

prolong flag determines what  edges should be processed. If  prolong=false, then only the edges from 
edges container should be processed, see Figure M.2.12.6.

Fig. M.2.12.6.

If  prolong=true,  then  edges  specified  in  edges container  should  to  be  processed,  as  well  as  edges 
smoothly joined with them, see Figure M.2.12.7.

127



Fig. M.2.12.7.

When chamfers of three edges mating in a single vertex are constructed, smoothCorner parameter defines 
the method used to process suitcase corners. Let's take as an example the solid shown in Figure M.2.12.8 and  
show how to use smoothCorner parameter to construct chamfers at all edges of the solid.

Fig. M.2.12.8.

If  smoothCorner=ec_pointed, then corners that join three edges of the same convex are not processed,  
and constructed solid has a point where three faces with the same chamfer meet, see Figure M.2.12.9.

128



Fig. M.2.12.9.

If  smoothCorner parameter has any other value, then corners where three edges meet are processed by 
constructing an additional face as shown in Figure M.2.12.10.

Fig. M.2.12.10.

Let's take a pyramidal solid shown in Figure M.2.12.11 as an example and show how to use this method 
to construct chamfers in particular cases. Result of solid construction for symmetrical configuration of edges 
and symmetrical chamfer is shown in Figure M.2.12.12.

129



   

Fig. M.2.12.11.                                                     Fig. M.2.12.12.

It should be noted that if you construct a chamfer for four or more edges that meet in a single vertex, all  
edge surfaces should intersect in a single point. An example of symmetrical chamfer for seven edges that  
meet in a single vertex is shown in Figure M.2.12.13.

Fig. M.2.12.13.

When edge  chamfer  is  constructed,  the  method  adds  MbFilletSolid  constructor  in  the  log  of  newly 
constructed solid. The constructor is declared in cr_chamfer_solid.h file.

test.exe test application processes solid edges using New ->Solid -> By Processing Edges -> Leg-Leg 
Chamfer, New ->Solid -> By Processing Edges -> Leg-Corner Chamber and New ->Solid -> By Processing 
Edges -> Corner-Leg Chamfer menu commands.

M.2.13. Constructing a Thin-Wall Solid

Method
MbResultType
ThinSolid ( MbSolid & solid,
                     MbeCopyMode sameShell,
                     RPArray<MbFace> & outFaces,
                     SweptValues & params,

130



                     const MbSNameMaker & names,
                     MbSolid *& result )
constructs a thin-wall solid by excluding specified faces from the original solid.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• outFaces is a set of faces that should be excluded,
• params are construction parameters,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method excludes outFaces faces from solid original solid, it also "sets a predetermined thickness" 

for remaining faces.  sameShell parameter controls transfer of faces, edges and vertices from solid original 
solid to  result constructed solid.  params parameter contains data on wall thickness in remaining faces, as 
well  as  data  on closure  of  constructed  result solid.  The  thickness  of  remaining  faces  may be equal  to 
params.thickness1 in positive direction of normal to the face or params.thickness2 in the negative direction 
of  normal  to  the  face.  If  params.shellClosed=false,  then  a  nonclosed  solid  will  be  constructed.  names 
parameter is used to name the faces of the constructed solid. To execute the operation, outFaces to be deleted 
should not have smooth edges attached to remaining edges of the original solid at a shared perimeter.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

In Fig. M.2.13.1, you can see solid original solid and outFaces faces that are deleted.

Fig. M.2.13.1.

In Fig. M.2.13.2, you can see result newly constructed thin-wall solid with the remaining faces thickened 
inside the original solid.

131



Fig. M.2.13.2.

In Fig. M.2.13.3, you can see newly constructed  result thin-wall solid with remaining faces thickened 
outside the original solid.

Fig. M.2.13.3.

In Fig. M.2.13.4, you can see result non-closed solid.

132



Fig. M.2.13.4.

In Fig. M.2.13.5, you can see a thin walled-solid that was constructed in case of empty set of faces that  
should be deleted.

Fig. M.2.13.5.

ThinSolid method adds MbShellSolid constructor to the log of the newly constructed solid that contains 
all data required to execute the operation. MbShellSolid constructor is declared in cr_thin_shell_solid.h file.

test.exe  test  application  constructs  a  thin-wall  solid  using  New ->Solid  ->  By Processing  Faces  -> 
Uniform Thickening menu command.

133



M.2.14. Constructing a Thin-Wall Solid with Various Wall Thickness

Method
MbResultType
ThinSolid ( MbSolid & solid,
                    MbeCopyMode sameShell,
                    RPArray<MbFace> & outFaces,
                    RPArray<MbFace> & offFaces,
                    SArray<double> & offDistances,
                    SweptValues & params,
                    const MbSNameMaker & names,
                    MbSolid *& result )
constructs a thin-wall solid by excluding specified faces and setting various thickness of remaining faces in 
the original solid.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• outFaces is a set of faces that should be excluded,
• offFaces is a set of faces for which individual thicknesses were set.
• offDistances is the set of individual thicknesses (it is synchronized with offFaces),
• params are construction parameters,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method deletes outFaces faces from solid original solid, it also "sets a predetermined thickness" for 

remaining faces. Face thickness may vary from face to face. sameShell parameter controls transfer of faces, 
edges and vertices from solid original solid to result constructed solid.  offFaces parameter contains faces, 
for  which  individual  values  of  offDistances  thicknesses  were  set.  offFaces[i]  thickness  will  be  set  for 
offDistances[i] faces. Thickness of the remaining faces is defined by params parameter.  params parameter 
contains data on closure of result solid, as well as data on wall thickness for the faces that should be kept  
and do not belong to  offFaces set. The tickness of remaining faces may be equal to  params.thickness1 in 
positive direction of normal to the face or params.thickness2 in the negative direction of normal to the face. 
names parameter is used to name the faces of the constructed solid. To execute the operation, outFaces to be 
deleted should not have smooth edges attached to remaining edges of the original solid at a shared perimeter.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces

In Fig. M.2.14.1, you can see solid original solid, outFaces faces that should be deleted and offFaces for 
which individual offDistances thickness values were set.

134



Fig. M.2.14.1.

In Fig. M.2.14.2, you can see result constructed solid with kept and newly constructed faces.

Fig. M.2.14.2.

To execute  the  operation,  each of  the  offFaces faces  should not  have smooth edges attached to  the 
remaining edges of the original solid along the shared perimeter if such faces have different thickness.

ThinSolid method adds MbShellSolid constructor to the log of the newly constructed solid that contains 
all data required to execute the operation. MbShellSolid constructor is declared in cr_thin_shell_solid.h file.

135



test.exe test application constructs a thin-wall solid using New ->Solid -> By Processing Faces -> With  
Uneven Thickness menu command.

M.2.15. Constructing Solids by Thickening the Surface

Method
MbResultType
ThinSolid ( const MbSurface & surface,
                     bool faceSense,
                     SweptValues & params,
                     const MbSNameMaker & names,
                     SimpleName name,
                     MbSolid *& result )
constructs a solid by defining the thickness of the specified surface.

Input parameters of the method are as follows:
• surface is the specified surface,
• faceSense determines orientation of normal to the surface at the face of the constructed solid,
• params are construction parameters,
• names is face namer,
• name is operation name.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method constructs a face based on  surface surface, and then a solid is constructed by "giving a 

thickness to this face". faceSense indicates whether the direction of normal to the surface coincides with the 
direction of normal to the face.  New thickness of the face is  determined by  params parameter.  params 
parameter  contains  wall  thickness  data  for  constructed  result solid.  Wall  thickness  may  be  equal  to 
params.thickness1 (for  positive  direction  of  the  normal  to  the  face)  or  params.thickness2 (for  negative 
direction of the normal to the face). names and name parameters provide naming of the faces of the newly 
constructed solid.

In Fig. M.2.15.1, you can see surface original surface.

Fig. M.2.15.1.

In Fig. M.2.15.2, you can see constructed result solid.

136



Fig. M.2.15.2.

ThinSolid method adds MbShellSolid constructor to the log of the newly constructed solid that contains 
all data required to execute the operation. MbShellSolid constructor is declared in cr_thin_shell_solid.h file.

test.exe  test  application  constructs  a  thin-wall  solid  using  New  ->Solid  ->  Based  on  Surface  ->  
Thickening menu command.

M.2.16. Constructing a Mirror Solid

Method
MbResultType
MirrorSolid ( const MbSolid & solid,
                        const MbPlacement3D & place,
                        const MbSNameMaker & names,
                        MbSolid *& result )
constructs a mirror copy of the original solid in relation to the given plane.

Input parameters of the method are as follows:
• solid is the original solid,
• place is local coordinate system, its XY plane is a mirror plane,
• names is cut face namer.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method constructs a mirror copy of  solid original solid in relation to XY plane of specified  place 

local coordinate system. names parameter is used to name the faces of the constructed solid.
In Fig. M.2.16.1, you can see solid original solid and place symmetry plane.

137



Fig. M.2.16.1.

In Fig. M.2.16.2, you can see solid original solid and result constructed solid.

Fig. M.2.16.2.

MirrorSolid method adds MbSymmetrySolid constructor in a log of the newly constructed solid that 
contains  all  data  required  to  execute  the  operation.  MbSymmetrySolid  constructor  is  declared  in 
cr_symmetry_solid.h file.

test.exe  test  application  constructs  a  symmetrical  solid  using  New  ->Solid  ->  Based  on  Solid  -> 

138



Symmetrical menu command.

M.2.17. Boolean Operation on Solids and Set of Solids

Method
MbResultType
UnionResult ( MbSolid * solid,
                         MbeCopyMode sameShell,
                         RPArray<MbSolid> & solids,
                         MbeCopyMode sameShells,
                         OperationType oType,
                         bool checkIntersect,
                         bool mergeFaces,
                         const MbSNameMaker & names,
                         bool isArray,
                         MbSolid *& result,
                         RPArray<MbSolid> * notGluedSolids = NULL )
merges a given set of solids and executes a determined Boolean operation on the original solid if it was 
specified.

Input parameters of the method are as follows:
• solid is the original solid (it may be equal to zero),
• sameShell is a version of original solid copying method,
• solids is the set of solids,
• sameShells is copying method for the solids in the set,
• oType is Boolean operation type: bo_Union means merging of the solids,

                                                                   bo_Intersect means intersection of the solids,
                                                                   bo_Difference means subtraction of the solids,

• checkIntersect is a flag used to check intersection for a set of solids (false means "no check"),
• mergeFaces indicates whether similar faces should be merged,
• names is face namer,
• isArray is regularity flag for the set of solids.

Results of the method are result constructed solid and notGluedSolids set of solids that were not used in 
the operation (it may be equal to zero).

If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 
enumeration.

The method is declared in action_solid.h file.
This method is a version of  BooleanSolid Boolean operation that accelerates execution when the same 

Boolean operation with solid solid is applied to many other solids. First, this method merges the solids from 
solids set and creates a temporary solid, then it executes specified oType Boolean operation for solid solid on 
this temporary solid. solids solids may not overlap with each other. sameShell parameter controls transfer of 
faces, edges and vertices from solid original solid to result constructed solid. sameShells parameter controls 
transfer of faces, edges and vertices from solids set of solids to  result resulting solid.  checkIntersect and 
isArray parameters control construction of the temporary solid for solids set of solids. mergeFaces parameter 
controls merging of similar faces. names parameter is used to name the faces of the constructed solid.

sameShell (sameShells) parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

OperationType  oType parameter  defines  Boolean  operation  type;  it  takes  one  of  the  following three 
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union, then the method merges solid solid and 
solids set of solids; if oType=bo_Intersect, then the method intersects solid solid and solids set of solids; if 
oType=bo_Difference, then the method subtracts solids set of solids from solid solid.

checkIntersect and isArray parameters are used to accelerate UnionResult method.
checkIntersect parameter gives a command to check intersection of solids included in solids set with each 

other. If  checkIntersect==true, then all  intersecting solids from  solids set are merged during construction 
using a Boolean operation.  Otherwise,  all  faces  of  solids from the original  set  are  copied to  the  newly 

139



constructed solid. Despite the value of  checkIntersect parameter, all nonintersecting  solids solids transfer 
their faces to newly constructed temporary solid.

mergeFaces parameter permits to merge similar faces in result solid that was constructed or to keep them 
separated.  Influence  of  mergeFaces parameter  is  shown  in  Figures  M.2.17.2  and  M.2.17.3.  If 
mergeFaces==false, then similar faces are not merged.

isArray is  used  only if  checkIntersect==true  and  it  informs  on  regularity  of  solids set  of  solids.  If 
isArray==true, then the solids of the set are located in nodes of rectangular or circular grid, and positions of 
the solids are specified in face names.

notGluedSolids parameter contains solids that were not used in the operation because it is impossible to 
merge them with the common temporary solid.

In Fig. M.2.17.1, you can see solid original solid and solids set of solids.

Fig. M.2.17.1.

In Fig. M.2.17.2, you can see result solid, which is the result of gluing solids solids to solid solid. In this 
case, checkIntersect parameter may be equal to false, as solids solids do not intersect with each other.

140



Fig. M.2.17.2.

In Fig. M.2.17.3, you can see solid original solid and solids set of solids.

Fig. M.2.17.3.

In Fig. M.2.17.4, you can see  result solid that was constructed by subtracting  solids solids from solid 
solid, if the method was used with mergeFaces== true. In this case, checkIntersect parameter should be equal 
to true, as solids solids intersect with each other.

141



Fig. M.2.17.4.

In Fig. M.2.17.5, you can see result solid that was constructed by subtracting solids solids from solid if 
the method was used with mergeFaces ==false.

Fig. M.2.17.5.

In Fig. M.2.17.6, you can also see faces of the resulting solid (that was constructed by subtracting solids 
solids from solid solid (given in Figure M.2.17.5)) colored in the colors of the original solids. The shape of 
faces permits you to determine the sequence how solids solids were included into the temporary solid: a solid 
leaves a more complete impress if it was included in the temporary solid before other solids.

142



Fig. M.2.17.6.

UnionResult method adds MbUnionSolid constructor  in  the  log  of  the  newly constructed  solid  that  
contains all data required to execute the operation. MbUnionSolid constructor is declared in cr_union_solid.h 
file.

test.exe test application executes solid Boolean operations on a set of solids using New ->Solid -> Attach 
to Other Solid -> In a Set of Solids, New ->Solid -> Cut from Other Solid -> In a Set of Solids, New ->Solid 
-> Intersection with Other Solid -> In a Set of Solids menu commands.

M.2.18. Merging a Set of Solids

Method
MbResultType
UnionSolid ( RPArray<MbSolid> & solids,
                       MbeCopyMode sameShells,
                       bool checkIntersect,
                       const MbSNameMaker & names,
                       bool isArray,
                       MbSolid*& result,
                       RPArray<MbSolid> * notGluedSolids = NULL )
merges solids of the specified set.

Input parameters of the method are as follows:
• solids is the set of solids,
• sameShells is copying method for the solids in the set,
• checkIntersect is a flag used to check intersection for a set of solids (false means "no check"),
• names is face namer,
• isArray is a flag defining whether the set of solids is regular.

Results of the method are result constructed solid and notGluedSolids set of solids that were not used in 
the operation (it may be equal to zero).

If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 
enumeration.

143



The method is declared in action_solid.h file.
The method is similar  to  UnionResult method, if  solid=0,  sameShell=cm_Same,  oType=bo_Base and 

mergeFaces=true. This method accelerates execution when it is required to merge many solids. The method 
merges  solids solids and constructs  result solid; the solids may not intersect with each other.  sameShells 
parameter controls transfer of faces, edges and vertices from solids set of solids to  result resulting solid. 
checkIntersect and  isArray parameters control construction of the temporary solid for  solids set of solids. 
names parameter is used to name the faces of the constructed solid.

sameShells parameter  can  take  one  of  the  following  four  values:  cm_Copy,  cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces

checkIntersect and isArray parameters are used to accelerate UnionResult method.
checkIntersect parameter gives a command to check intersection of solids included in solids set with each 

other. If checkIntersect==true, then a Boolean operation is executed to merge all intersecting solids included 
in solids set. Otherwise, all faces of solids from the original set are copied to the newly constructed solid.  
Despite the value of checkIntersect parameter, all non-intersecting solids solids transfer their faces to newly 
constructed temporary solid.

isArray is  used  only if  checkIntersect==true  and  it  informs  on  regularity  of  solids set  of  solids.  If 
isArray==true, then the solids of the set are located in nodes of rectangular or circular grid, and positions of 
the solids are specified in face names.

notGluedSolids parameter contains solids that were not used in the operation because it was impossible 
to merge them.

In Fig. M.2.18.1, you can see solids original solids.

Fig. M.2.18.1.

In  Fig.  M.2.18.2,  you  can  see  result solid  constructed  by  merging  solids solids.  In  this  case, 
checkIntersect parameter should be equal to true, as solids solids intersect with each other.

144



Fig. M.2.18.2.

Method
MbResultType
UnionSolid ( const RPArray<MbSolid> & solids,
                      const MbSNameMaker & names,
                      MbSolid *& result )
is  a  simplified  version  of  discussed  method  having  the  same  name,  the  two  methods  coincide  if  
sameShells=cm_Same,  checkIntersect==false,  isArray==false  and  notGluedSolids==NULL.  The  latter 
method does not check or construct anything, rather it simply composes result solid using all faces of solids 
solids. So original solids and a newly constructed solid have the same faces.

UnionSolid methods  add  MbUnionSolid  constructor  in  the  log  of  the  newly  constructed  solid  that 
contains all data required to execute the operation. MbUnionSolid constructor is declared in cr_union_solid.h 
file.

test.exe test application executes solid Boolean operations on a set of solids using New ->Solid -> Based  
on Solid -> Set of Solids menu command.

M.2.19. Divide a Solid to Disconnected Parts

Method
unsigned int
DetachParts ( MbSolid & solid,
                         RPArray<MbSolid> & parts,
                         bool sort,
                         const MbSNameMaker & names )
divides a solid to disconnected parts.

Input parameters of the method are as follows:
• solid is the original solid,
• sort is a flag used to sort disconnected parts in descending order by the larges dimension,
• names is face namer.

Input parameters of this method are solid original solid and parts set of its disconnected parts.
This method returns the number of disconnected parts.
The method is declared in action_solid.h file.
After subtracting  solid2 solid from solid2 solid shown in Figure M.2.19.1, the result of  solid Boolean 

operation would consist of several topologically disconnected parts (Figure M.2.19.2), although they would  

145



behave as a single object. The method permits to divide  solid solid that consists of several topologically 
disconnected parts to individual solids. One part stays in solid original solid, and all other parts are sent to 
received parts container.

Fig. M.2.19.1.

Fig. M.2.19.2.

If sorting flag sort==true, then the part with largest dimensions will  remain in the original solid, and  
separated parts will be sorted by dimensions in descending order as shown in Figure M.2.19.3. Otherwise, 
the part topologically related to the first face will remain in the original solid, and separated parts will be  
sorted by the number of initial face in the original solid.

Fig. M.2.19.3.

names parameter provides naming of faces in the created solid and operation versioning.
Method

146



unsigned int
CreateParts ( const MbSolid & solid,
                        RPArray<MbSolid> & parts,
                        const MbSNameMaker & names )
executes the same operations as the previous method, the difference is that it does not change solid original 
solid and adds all topologically disconnected parts of the original solid to parts solids as shown in Figure 
M.2.19.4.

Fig. M.2.19.4.

parts solids will be constructed on the same faces as solid original solid.
DetachParts and CreateParts methods add MbDetachSolid constructor in the log of newly constructed 

solid that  contains  all  data required to execute the  operation.  MbDetachSolid constructor is  declared in  
cr_detach_solid.h file.

test.exe test application executes solid Boolean operations on a set of solids using Modify ->Solid or  
Shell->Divide Parts menu command.

M.2.20. Separation of Disconnected Parts

Method
MbResultType
ShellPart ( const MbSolid & solid,
                    size_t id,
                    const MbPath & path,
                    const MbSNameMaker & names,
                    MbPartSolidIndices & partIndices,
                    MbSolid * & result )
creates a separate solid from a specified part of the original solid that falls apart.

Input parameters of the method are as follows:
• solid is the original solid,
• id is the number of the selected part of the original solid,
• path is the identifier of the selected part of the original solid in the model,
• names is face namer.
• partIndices are indices of solid parts.

Output parameters of this method are result constructed solid and indices of solid parts.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration. The method is declared in action_solid.h file.
The method constructs a solid from the specified part of original solid. The original solid should consist  

of separate parts. In Fig. M.2.20.1, you can see the result of Boolean operation that subtracts solids shown in  
Figure M.2.19.1. The resulting solid consists of several topologically separated parts. This method permits to 

147



create a solid keeping only one of topologically separated parts of the original solid.
id indicates part number of solid original solid. path parameter contains path to the solid part. In a simple 

case, the path to solid part contains part number in id original solid.
In Fig. M.2.20.1, you can see an original solid that consists of several topologically separated parts.

Fig. M.2.20.1.

In Fig. M.2.20.2, you can see a newly constructed solid consisting of one selected part of the original solid.

Fig. M.2.20.2.

result solid will be constructed on the same faces as solid original solid.
ShellPart method adds MbDetachSolid constructor in the log of newly constructed solid that contains all  

data required to execute the operation. MbDetachSolid constructor is declared in cr_detach_solid.h file.
test.exe test application executes solid Boolean operations on a set of solids using New ->Solid -> Based  

on Solid -> Part of Solids Set menu command.

M.2.21. Splitting Solid Faces

Method
MbResultType
SplitSolid ( MbSolid & solid,
                    MbeCopyMode  sameShell,
                    const RPArray<MbSpaceItem> & items,
                    bool  same,
                    RPArray<MbFace> &  faces,
                    const MbSNameMaker & names,
                    MbSolid *&  result )
splits specified solid faces with spatial curves, surfaces and shells.

Input parameters of the method are as follows:
• solid is the original solid,

148



• sameShell is a version of original solid copying method,
• items are spatial elements that split the faces,
• same indicates whether original spatial elements (true) or theirs copies (false) should be used,
• faces is a set of splitted faces,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.The method is declared in action_solid.h file.
The  method  splits  specified  faces of  solid original  solid  using  items 3D objects,  if  specified  faces 

intersect  with  items objects.  Curves,  surfaces  or  a  solid  may be used as  items objects.  To execute  the 
operation, the cutting objects should fully intersect with the specified faces of the original solid. sameShell 
parameter controls transfer of faces, edges and vertices from solid original solid to result constructed solid. 
same parameter  controls  copying of  cutting objects.  names parameter  is  used to  name the faces  of  the 
constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

In Fig. M.2.21.1, you can see solid original solid, faces that should be split and items[0] cutting surface.

Fig. M.2.21.1.

In Fig. M.2.21.2, you can see newly constructed  result solid with splitted specified faces. New edges 
return true to IsSplit query. In Fig. M.2.21.3, splitted faces of the constructed solid are painted in different  
colors.

Fig. M.2.21.2.                                                              Fig. M.2.21.3.

149



Method
MbResultType
SplitSolid ( MbSolid   & solid,
                    MbeCopyMode  sameShell,
                    const MbPlacement3D & place,
                    MbeSenseValue   type,
                    const RPArray<MbContour> & contours,
                    bool same,
                    RPArray<MbFace> & faces,
                    const MbSNameMaker & names,
                    MbSolid *& result )
executes the same actions as the method considered above, the difference is that instead of using  items 
splitting objects,  solid solid faces are split by surfaces constructed by extruding two-dimensional contours 
located in XY plane of place local coordinate system. The contours are extruded in direction of place.axis.Z 
of the local coordinate system; extrusion length should provide a complete intersection with the original  
solid.

SplitSolid methods add MbSplitShell constructor in the log of the newly constructed solid that contains 
all data required to execute the operation. MbSplitShell constructor is declared in cr_split_shell.h file.

test.exe test application splits specified faces of the solid using New ->Solid -> By Processing Faces -> 
By Splitting Face menu command.

M.2.22. Constructing a Hole, Pocket or Slot in a Solid

Method
MbResultType
HoleSolid ( MbSolid * solid,
                    MbeCopyMode sameShell,
                    const MbPlacement3D & place,
                    const HoleValues & parameters,
                    const MbSNameMaker & names,
                    MbSolid *& result )
constructs a hole, a pocket or a cam slot in a solid.

Input parameters of the method are as follows:
• solid is the original solid (it may be equal to zero),
• sameShell is solid copying method,
• place is local coordinate system used to position a cutting tool,
• parameters are construction parameters,
• names is face namer.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
This method constructs an auxiliary solid in the form of deleted object for a hole, a pocket or a slot. If  

solid original solid is specified, then the method returns the difference between the original solid and the 
auxiliary solid. If the original solid is not specified (solid==0), then the method returns the auxiliary solid. 
To execute  the  operation,  auxiliary solid  should  intersect  with  the  original  solid.  parameters parameter 
defines shape of hole, pocket or slot. sameShell parameter controls transfer of faces, edges and vertices from 
solid original solid to result constructed solid. names parameter is used to name the faces of the constructed 
solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode intersection is described in item O.7.9. Copying a Set of Faces

Construction is executed in place local coordinate system taking into account parameters.placeAngle and 
parameters.azimuthAngle rotation angles. parameters.placeAngle parameter defines the angle of rotation of 

150



place local coordinate system with respect to place.axisY axis. parameters.azimuthAngle parameter defines 
the angles of rotation of place local coordinate system with respect to place.axisZ axis. parameters.surface 
surface may be not given. If  parameters.surface is not equal to zero, then this surface is used to properly 
handle an inlet to a hole, pocket or slot.

In  Fig.  M.2.22.1,  you  can  see  data  used  for  construction  and  parameters  inheritance  scheme  from 
HoleValues abstract class.

Fig. M.2.22.1.

BorerValues  parameters should be used  to  construct  a hole.  There are  six hole  types  defined by the 
BorerValues::type parameter that takes one of the following values: bt_SImpleCylinder, bt_TwofoldCylinder, 
bt_ChamferCylinder,  bt_ComplexCylinder,  bt_SImpleCone,  bt_ArcCylinder.  In  Fig.  M.2.22.2,  M.2.22.3, 
M.2.22.4, M.2.22.5, M.2.22.6, M.2.22.7, you can see holes having different shapes.

151



Fig. M.2.22.2.   Fig. M.2.22.3.

Fig. M.2.22.4.   Fig. M.2.22.5.

152



Fig. M.2.22.6.   Fig. M.2.22.7.

PocketValues  parameters  should  be  used  to  construct  a  pocket  or  a  protrusion.  If 
PocketValues::type=false,  then  specified  parameters are  used  to  construct  a  pocket;  if 
PocketValues::type=true, then specified parameters are used to construct a protrusion. In Fig. M.2.22.8, you 
can see a solid with a rectangular pocket without a slope of side faces.

Fig. M.2.22.8.

SlotValues  parameters  should  be  used  to  construct  a  slot.  There  are  four  slot  types  defined  by 
SlotValues::type parameter that takes one of the following values: st_BallEnd, st_Rectangular, st_TShaped, 
st_DoveTail.

HoleSolid method adds MbRibSolid constructor in the log of the newly constructed solid that contains 
data required to execute the operation. MbHoleSolid constructor is declared in cr_hole_solid.h file.

test.exe test application splits specified faces of the solid using New ->Solid -> Based on Solid -> With a 
Hole menu command.

153



M.2.23. Constructing a Solid with an Enforcement Rib

Method
MbResultType
RibSolid ( MbSolid & solid,
                  MbeCopyMode sameShell,
                  const MbPlacement3D & place,
                  const MbContour &  contour,
                  size_t            index,
                  RibValues & params,
                  const MbSNameMaker & names,
                  MbSolid *& result )
constructs a solid with an enforcement rib.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• place is a local coordinate system, its XY plane is a symmetry plane,
• contour is shape-generating contour in XY plane of local coordinate system,
• index is segment number in the contour,
• params are parameters of the enforcement rib,
• names is the namer of rib faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration. The method is declared in action_solid.h file.
This method constructs an enforcement rib using specified  contour contour and it merges the rib with 

solid original solid. Contour segment with specified number defines a slope vector.
params parameter defines data for building (Fig. M.2.23.1).

Fig. M.2.23.1.

RibValues structure defined in the file swept_parameter.h
sameShell parameter controls transfer of  faces, edges and vertices from  solid original  solid to  result 

constructed solid. names parameter is used to name the faces of the constructed solid.
sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 

cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces  .
In Fig. M.2.23.2, you can see solid original solid, place local coordinate system and contour in XY plane 

of the latter.

154



Fig. M.2.23.2.

In Fig. M.2.23.3, you can see newly constructed enforcement rib without a slope of side faces.

Fig. M.2.23.3.

In Fig. M.2.23.4, you can see newly constructed enforcement rib with a slope of side faces.

155



Fig. M.2.23.4.

RibSolid method adds MbRibSolid constructor in the log of newly constructed solid that contains all data 
required to execute the operation. MbRibSolid constructor is declared in cr_rib_solid.h file.

test.exe test application splits specified faces of the solid using New ->Solid -> Based on Solid -> With  
Enforcement Rib menu command.

M.2.24. Sloping Solid Faces

Method
MbResultType
DraftSolid ( MbSolid & solid,
                     MbeCopyMode sameShell,
                     const MbPlacement3D & place,
                     double angle,
                     const RPArray<MbFace> & faces,
                     MbeFacePropagation  propagation,
                     bool reverse,
                     const MbSNameMaker & names,
                     MbSolid *& result )
constructs a solid with specified faces of the solid sloped from neutral isometric plane at a predetermined 
angle.

Input parameters of the method are as follows:
• solid is the original solid,
• sameShell is a version of original solid copying method,
• place is neutral plane,
• angle is slope angle,
• faces is a set of faces that should be sloped,
• propagation is a flag of capturing faces that are smoothly joined with sloping faces,
• reverse is a flag indicating a reverse slope,
• names is a namer of constructed faces.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.The method is declared in action_solid.h file.
This method constructs a solid with faces sloped relative to their position in solid original solid. params 

156



parameter defines construction parameters. sameShell parameter controls transfer of faces, edges and vertices 
from solid original solid to result constructed solid. XY plane in place local coordinate system defines the 
plane, in relation to which solid faces are sloped. angle parameter defines slope angle. faces set contains the 
faces that should be sloped. propagation parameter controls addition to the set of faces that should be sloped 
other  solid  faces that  should  be  smoothly  joined  with  sloped  faces.   reverse parameter  defines  slope 
direction. names parameter is used to name the faces of the constructed solid.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface, 
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

In Fig. M.2.24.1, you can see solid original solid, place local coordinate system, in relation to XY plane 
of the latter sloping is executed and faces that should be sloped.

Fig. M.2.24.1.

In Fig. M.2.24.2, you can see the constructed solid; its specified faces are sloped.

Fig. M.2.24.2.

DraftSolid method adds MbDraftSolid constructor in the log of the newly constructed solid that contains 
all data required to execute the operation. MbDraftSolid constructor is declared in cr_draft_solid.h file.

157



test.exe test application splits the specified faces of the solid using New ->Solid -> By Processing Faces  
-> By Sloping Faces menu command.

M.2.25. Multiplication of Solids

Method
MbResultType
DuplicationSolid ( const MbSolid & solid,
                                const DuplicationValues & parameters,
                                const MbSNameMaker & names,
                                MbSolid *& result )
constructs copies of the original solid, transforms them according a specified rule and merges them into a 
single solid.

Input parameters of the method are as follows:
• solid is the original solid,
• parameters are construction parameters,
• names is face namer.

Method output parameter is result constructed solid.
If  successful,  the  method  returns  rt_Success,  otherwise  it  returns  error  code  from  MbResultType 

enumeration.
The method is declared in action_solid.h file.
names  parameter  is  used  to  name  the  faces  of  the  constructed  solid.  parameters parameter  defines 

construction parameters. In Fig. M.2.25.1, you can see data used for construction and parameter inheritance 
scheme from DuplicationValues abstract class.

Fig. M.2.25.1.

DuplicationMeshValues parameters should be used to make copies of the solid and align them to 2D grid.  
The  following  two  multiplication  methods  are  supported:  using  two  directions  and  using  a  polar  grid.  
parameters.isPolar parameter defines grid type. If parameters.isPolar=false, then the original solid and its 
copies are located in the nodes of 2D grid having parameters.axis1 and parameters.axis2. The original solid 
is  the  reference  point.  Along  parameters.axis1,  parameters.num1  copies  of  the  solid  are  located  with 
parameters.step1;  along  parameters.axis2 axis,  parameters.num2  copies  of  the  solid  are  located  with 
parameters.step2, including the original solid. If parameters.isPolar=true, than newly constructed copies of 
the solid are located in nodes of a polar grid. The original solid is the reference point. Radial direction of the  
grid  is  determined  by  parameters.axis1 vector,  and  rotation  axis  is  determined  by  vectors  product  of 
parameters.axis1 and  parameters.axis2.  parameters.num1  copies  of  the  solid  are  located  with 
parameters.step1 along radial directions; parameters.num2 copies of the solid are located on each circle with 

158



angular parameters.step2 .
You should use DuplicationMatrixValues parameters to multiply a solid and to transform its copies by a 

set of matrices. parameters.matrices parameter defines a set of transformation matrices.
If after construction the original solid or its copies intersect with each other, then a Boolean operation is 

executed to merge intersecting solids. In Fig. M.2.25.2, you can see a solid multiplied in a polar grid.

Fig. M.2.25.2.

DuplicationSolid method adds MbDuplicationSolid constructor in the log of newly constructed solid that 
contains  all  data  required  to  execute  the  operation.  MbDuplicationSolid  constructor  is  declared  in  
cr_duplication_solid.h file.

test.exe test application splits specified faces of the solid using New ->Solid -> Based on Solid -> By 
Grid Multiplication and New ->Solid -> Based on Solid -> By Matrix Multiplication menu commands.

159



O.1. ELEMENTARY OBJECTS

Elementary objects are C3D kernel geometric objects that describe the following mathematical entities:  
a vector,  a  point,  an  axis,  local  coordinate  system,  transformation  matrix,  bounding  box  and  bounding 
rectangle. Elementary objects have simple data structures. Elementary object is a tool and building block for  
more complex geometric objects, so they are used by all modules of the geometric kernel.

O.1.1. MbVector3D Vector in Three-Dimensional Space

MbVector3D class is declared in mb_vector3d.h file.
MbVector3D vector describes movement or direction in three-dimensional space. It is determined by x, y 

and z components in Cartesian coordinate system.
We will use one or more bold lower-case Roman letters for 3D vectors; all vector components will be 

placed in square brackets, for example:

vector = [x  y  z].

MbVector3D vector is not attached to any point in the space, so it does not have a method that moves in 
space.

O.1.2. MbCartPoint3D Radius Vector of Point in 3D Space

MbCartPoint3D class is declared in mb_cart_point3d.h file.
MbCartPoint3D radius vector (Cartesian point) describes location in 3D space; it is determined by x,  y 

and z components in Cartesian coordinate system. Radius vector describes a transformation that moves the 
initial  point  of  the  Cartesian  coordinate  system to  a  point  in  space  having  specified coordinates  in  the 
Cartesian coordinate system.

We will use one or more bold lower-case Roman letters for points in 3D space; point coordinates will be  
placed in square brackets, for example:

point = [x  y  z].

Unlike  a  vector,  a  radius  vector  is  associated  with  the  origin  of  coordinates.  Coordinates  of 
MbCartPoint3D radius vector and  MbVector3Dundergo different  changes in  case  of  transition from one 
coordinate system to other, and also when their position in space is changed using the following methods:
MbCartPoint3D & Transform( constMbMatrix3D& ),
MbCartPoint3D & Rotate( const MbAxis3D &, double angle ),
MbCartPoint3D & Move( const MbVector3D& ).
Mentioned methods return a reference to itself after transformation.

O.1.3. MbHomogenius3D Homogenius Vector in Three-Dimensional Space

MbHomogenius3D class is declared in mb_homogenius3d.h file.
MbHomogenius3D homogenius radius vector describes location of a point in 3D space; it is defined by 

four coordinates: x,  y,  z and w. The fourth coordinate is called weight. homogenius radius vector is used to 
calculate radius vector for B-curves and B-surfaces constructed based on B-splines. xw, yw, zw, w coordinates 
of MbHomogenius3D homogenius radius vector are linked with x, y, z coordinates of the radius vector; these 
relationships are described by the following equations:



w
x

x w , 
w
y

y w , 
w
z

z w .

For MbMatrix3D multiplication operations, we can assume that vectors and points also have the fourth  
coordinate; it is equal to zero for MbVector3Dand it is equal to one for MbCartPoint3D.

O.1.4. MbPlacement3D Local Coordinate System

MbPlacement3D class is declared in mb_placement3d.h file.
Local coordinate system in MbPlacement3D three-dimensional space is described by origin initial point 

and three non-coplanar vectors (axisX, axisY and axisZ). Please see Figure O.1.4.1.

Fig. O.1.4.1.

In most  cases,  right-handed coordinate  system is  used and the vectors  are  orthonormal.  The coordinate  
system can become left-handed and non-orthonormal after transformation. The following methods are used  
to request information on the state of coordinate system:
bool IsLeft() the method permits to find out whether the coordinate system is left-handed,
bool IsRight() the method permits to find out whether the coordinate system is right-handed,
bool IsTranslation() the method permits to find out whether origin coordinate system has an offset,
bool IsRotation() the method permits to find out whether the coordinate system is rotated,
bool IsOrt() the method permits to find out whether the coordinate system is orthogonal and not normalized,
bool IsSingle() the method permits to find out whether the coordinate system coincides with the coordinate 
system where it was defined,
bool IsNormal() the method permits to find out whether the coordinate system is orthonormal,
bool IsOrtogonal() the method permits to find out whether the coordinate system is orthogonal,
bool IsCircular() the method permits to find out whether the coordinate system is orthogonal and has axisX 
and axisY with equal length; a circle in this coordinate system remains a circle,
bool IsIsotropic() the method permits to find out whether the coordinate system is orthogonal and has axisX, 
axisY and axisZ axes with equal length; objects in this coordinate system are not distorted, they are rather  
scaled,
bool  IsAffine()  the method permits to find out  whether the coordinate system is affine (otherwise,  it  is 
orthonormal).

Local  coordinate  system is  Cartesian.  A point  in  a  Cartesian  coordinate  system is  defined  by three  
coordinates: x, y and z. Local system can be cylindrical or spherical coordinate system.

If you use MbPlacement3D local coordinate system as a cylindrical system, then Z axis of the cylindrical 
coordinate system coincides with Z axis of the Cartesian one, polar axis of the cylindrical system coincides 
with X axis of the Cartesian system, and polar angle of the cylindrical system is measured from X axis 
towards Y axis. x coordinate plays the role of projection of radius vector to XY plane; y coordinate plays the 
role of polar angle.

If you use MbPlacement3D local coordinate system as a spherical system, then the plane of spherical  
coordinate system coincides with XY plane of the Cartesian system, and longitude of spherical system is 
measured from X axis towards Y axis. x coordinate plays the role of the length of radius vector; y coordinate 
plays the role of longitude.

161



O.1.5. MbMatrix3D Extended Matrix in Three-Dimensional Space

MbMatrix3D class is declared in mb_matrix3d.h file.
In a three-dimensional space, Matrix3D matrix describes transformation from one coordinate system to 

other one. It is a 4-by-4 matrix. Let the specified coordinate system have a local affine coordinate system 
with origin in r point with r1, r2, r3 coordinates and a=[a1 a2 a3], b=[b1 b2 b3] and c=[c1 c2 c3] basis vectors. 
a, b and c vectors should be linearly independent, but they may be non-orthogonal and may have arbitrary 
length. Matrix3D matrix for transformation from the local coordinate system to the specified one looks as  
follows





















1

0

0

0

321

321

321

321

rrr

ccc

bbb

aaa

M .

We will use bold capital Roman letters to denote extended matrices in 3D space, for example: M. Please 
note  that  each  of  a,  b and  c basis  vectors  and  r initial  point  of  the  local  coordinate  system  has  a 
corresponding  row in  the  matrix  that  executes  transformation  from the  local  coordinate  system to  the  
specified one.

MbMatrix3D is an extended matrix that works with uniform radius vectors and  MbHomogenius3D in 
three-dimensional space.

If  MbCartPoint3D radius  vector  is  transformed using  MbMatrix3D matrix,  then the  point  should  be 
assigned the forth coordinate equal to one. Let the point with x1, x2, x3 coordinates in local coordinate system 
have  p1,  p2,  p3 coordinates in specified coordinate system. If MbMatrix3D extended matrix is used, then 
these coordinates will be related as follows:

   




















1

0

0

0

11

321

321

321

321

321321

rrr

ccc

bbb

aaa

xxxppp .

Please note that 3D radius vector is multiplied by MbMatrix3D extended matrix on the right.
If  MbVector3D vector is transformed using MbMatrix3D matrix, then the vector should have the forth 

coordinate equal to zero. Let a vector with components  y1,  y2,  y3 in local coordinate system have  r1,  r2,  r3 

components  in  the  specified  coordinate  system.  If  MbMatrix3D  extended  matrix  is  used,  then  these  
components will be related as follows:

   




















1

0

0

0

00

321

321

321

321

321321

rrr

ccc

bbb

aaa

yyyrrr .

Please note that 3D vector is multiplied by MbMatrix3D extended matrix on the right.

162



O.1.6. MbCube Bounding Box in Three-Dimensional Space

MbCube class is declared in mb_cube.h file.
MbCube bounding box describes  the dimensions of extended object  (curve,  surface,  solid  or several 

solids) in 3D space and it is defined by two points: pmin and pmax. The faces of bounding box are parallel 
to the planes of the coordinate system where the cube is described.  pmin and  pmax points describe two 
opposite vertexes of the bounding box with minimal and maximal coordinates respectively. Please see Figure 
O.1.6.1.

Fig. O.1.6.1.

If  the  dimensions  of  extended  object  are  not  set,  then  the  bounding  box  is  considered  empty  and 
pmin=[10-300 10-300 10-300],  pmax=[–10-300 –10-300 –10-300].  The  following condition  holds  for  an  empty 
bounding box: pmin>pmax; IsEmpty() method returns true.

O.1.7. MbRect1D Univariate Dimension

MbRect1D class is declared in mb_rect1d.h file.
MbRect1D univariate dimension describes one-dimensional area (for example, curve parameter definition 

area); it is defined by two values: zmin and zmax. Please see Figure O.1.7.1.

Fig. O.1.7.1.

zmin and  zmax values describe leading and trailing edges of the area.  If  one-dimensional area is not 
defined, then univariate dimension is considered empty and  zmin>zmax. If univariate dimension is empty, 
then IsEmpty() method returns true.

163



O.1.8. MbVector Vector in Two-Dimensional Space

MbVector class is declared in mb_vector.h file.
MbVector vector describes movement or direction in two-dimensional space. The vector is determined by 

x and y components in a Cartesian coordinate system.
We will use one or more bold and italic lower-case Roman letters for vectors in two-dimensional space;  

and vector components will be placed in square brackets, for example:

vector = [x  y].

MbVector vector is not attached to any points in space, so it does not have a method used to move it in the  
space.

O.1.9. MbDirection Normalized Vector in Two-Dimensional Space

MbDirection class is declared in mb_vector.h file.
MbDirection normalized vector describes direction or rotation angle in 2D space; it is defined by two 

components (ax and ay) in Cartesian coordinate system. The length of normalized vector is equal to one, and  
its components are sine and cosine of the angle between OX axis and the normalized vector.  Therefore,  
ax=cos(α),  ay=sin(α),  where  α is  the angle  between the normalized vector  and x-axis of  the coordinate  
system.

O.1.10. MbCartPoint Point Radius Vector in Two-Dimensional Space

MbCartPoint class is declared in mb_cart_point.h file.
MbCartPoint3D  (Cartesian  point)  radius  vector  describes  a  location  in  2D  space.  This  vector  is  

determined by x and y components in Cartesian coordinate system. Radius vector describes a transformation 
that  moves  the  initial  point  of  the  Cartesian  coordinate  system  to  a  point  in  space  having  specified  
coordinates in the Cartesian coordinate system.

We  will  use  one  or  more  bold  and  italic  lower-case  Roman  letters  for  points  in  3D  space;  point 
coordinates will be placed in square brackets, for example:

point = [x  y].

Unlike a vector, a radius vector is associated with the origin of coordinates. Coordinates of MbCartPoint 
radius  vector  and  MbVector vector  components  undergo  different  changes  during  transition  from  one 
coordinate system to other, as well as when their position in space is changed using the following methods:
void Transform(  const MbMatrix& ),
void Rotate(  const MbCartPoint &, double angle ),
void Move(  const MbVector& ).

O.1.11. MbHomogenius Homogenios Vector in Two-Dimensional Space

MbHomogenius class is declared in mb_homogenius.h file.
MbHomogenius extended radius vector describes location of a point in 2D space; it is defined by three 

coordinates: x,  y and w. The third coordinate indicates weight. extended radius vector is used to calculate a 
radius vector of  B-curves constructed on the basis of  B-splines.  xw,  yw,  w coordinates of MbHomogenius 
extended radius vector are linked to x and y coordinates of the MbCartPoint radius vector MbCartPoint   by 
the following equations:

164



w
x

x w ,
w
y

y w .

As for multiplication by an extended matrix MbMatrix, we can assume that 2D vectors and points also 
have the third coordinate, which is zero for MbVector vector and one for MbCartPoint.

O.1.12. MbPlacement Local Coordinate System

MbPlacement class is declared in mb_placement.h file.
Local coordinate system in MbPlacement 2D space is described by  origin initial  point and two non-

parallel vectors (axisX and axisY). Please see Figure O.1.12.1.

Fig. O.1.12.1.

In most cases, right-handed coordinate system and orthonormal vectors are used. The coordinate system 
can  become  left-handed  and  non-orthonormal  after  transformation.  The  following  methods  are  used  to 
request information on the state of coordinate system:
bool IsLeft() the method permits to find out whether the coordinate system is left-handed,
bool IsSingle() the method permits to find out whether the coordinate system coincides with the coordinate 
system where it was defined,
bool IsNormal() the method permits to find out whether the coordinate system is orthonormal,
bool IsCircular() the method permits to find out whether the coordinate system is orthogonal and has axisX 
and axisY with equal length; a circle in this coordinate system remains a circle,
bool IsIsotropic() the method permits to find out whether the coordinate system is orthogonal and has axisX 
and axisY of equal length; objects in this coordinate system are not distorted, they are rather scaled,
bool  IsAffine()  the method permits to find out  whether the coordinate system is affine (otherwise,  it  is 
orthonormal).

Local coordinate system is Cartesian.

O.1.13. MbMatrix Extended Matrix in Two-Dimensional Space

MbMatrix3D сlass is declared in mb_matrix3d.h file.
In 2D space, MbMatrix matrix describes transformation from one coordinate system to other one. It is 3-

by-3 matrix. Let specified coordinate system have a local affine coordinate system with origin at r point with 
r1 and r 2 coordinates and a=[a1 a2] and b=[b1 b2] basis vectors. a and b vectors shouldn't be collinear, but 
they may be non-orthogonal and they may have arbitrary length. MbMatrix matrix used for transformation 
from the local coordinate system to the specified one looks as follows


















1

0

0

21

21

21

rr

bb

aa

М .

165



We will use bold and italic capital Roman letters to denote an extended matrix in 3D space, for example:  
M. Please note that each of  a and  b basis vectors and  r initial point of the local coordinate system has a 
corresponding  row in  the  matrix  that  executes  transformation  from the  local  coordinate  system to  the  
specified coordinate system.

MbMatrix  is  an  extended  matrix  that  works  with  uniform radius  vectors  and  homogeneous  vectors 
MbHomogenius in 2D space.

When a radius vector MbCartPoint is transformed using MbMatrix matrix, the point should be assigned 
the  third  coordinate  that  should be equal  to  one.  Let  the  point  with  x1 and  x2 coordinates  in  the  local 
coordinate system have  p1 and  p2 coordinates in the specified coordinate system. If MbMatrix extended 
matrix is used, then these coordinates will be related as follows:

   

















1

0

0

 11

21

21

21

2121

rr

bb

aa

xxpp .

Please note that 2D radius vector is multiplied by MbMatrix extended matrix on the right.
If  vector  MbVector is  transformed  using  MbMatrix  matrix,  then  the  vector  should  have  the  forth 

coordinate that should be equal to zero. Let a vector with y1 and y2 components in local coordinate system 
have  r1 and  r2 components in the specified coordinate system. If MbMatrix extended matrix is used, then 
these components will be related as follows:

   

















1

0

0

 00

21

21

21

2121

rr

bb

aa

yyrr .

Please note that 2D vector is multiplied by MB Matrix extended matrix on the right.

O.1.14. MbRect Bounding Rectangle in Two-Dimensional Space

MbRect class is declared in mb_rect.h file.
MbRect bounding rectangle describes the dimensions of extended object (one or several curves) in 2D 

space, it is defined by four points: left, right, bottom and top. The sides of the bounding rectangle are parallel 
to the axes of the coordinate system where the rectangle is described. left and right values describe minimum 
and maximum abscissas of the bounding rectangle; bottom and top values describe minimum and maximum 
ordinates of the bounding rectangle. Please see Figure O.1.14.1.

Fig. O.1.14.1.

If the dimensions of an extended object are not determined, then the bounding rectangle is considered 
empty and left>right, bottom>top. If the bounding rectangle is empty, then IsEmpty() method returns true.

166



O.2. GEOMETRICAL OBJECTS

A geometrical  object  describes  the  form of  the  modeled  object.  Geometric  objects  include  curves, 
surfaces,  solids  as  well  as  topological  objects  that  describe  geometric  properties  that  don't  depend  on  
quantitative features and describe permanently interconnected points in 3D space. There are two-dimensional  
and three-dimensional geometric objects. Two-dimensional objects are used to work with definition areas of  
surface  parameters,  as  well  for  work  with  planes  of  local  3D  coordinate  systems.  Parent  classes  of  
geometrical objects are described in this part.

O.2.1. MbRefItem Reference Counter 

MbRefItem class is declared in reference_item.h file.
MbRefItem class is described by the number of its useCount owners; it is a counter of objects that own 

this object.
All  geometrical  objects  of  C3D  kernel  are  divided  into  three  groups:  two-dimensional  geometrical 

objects, three-dimensional geometrical objects, and topological objects. All geometrical objects are inheritors  
of MbRefItem and TapeBase classes. Please see Figure O.2.1.1.

Figure O.2.1.1.

TapeBase class opens a stream for its inheritors for both reading and writing. 
The following geometrical objects are inheritors of MbRefItem and TapeBase classes:

MbSpaceItem – base abstract class of three-dimensional geometrical objects,
MbTopItem – base abstract class of topological objects,
MbPlaneItem – base abstract class of two-dimensional geometrical objects,
MbFunction – base abstract class of scalar functions.

Reference counter provides correct operation of classes and methods that contain pointers to geometrical 
objects. If a certain class contains a pointer to a geometrical object, then it should increase reference counter  
of the geometrical object by one in the constructor using  AddRef() method; and it should call  Release() 
method for the geometrical object that reduces geometrical object reference counter by one in destructor. If a 
reference counter becomes zero then the geometrical object is deleted. DecRef() method decreases reference 
counter  of  geometrical  object  by  one.  MbRefItem  class  is  processed  by  MbRegDuplicate  duplication 
registrar and MbRegTransform transformation registrar.

MbeRefType RefType()



method returns registration type of the object that uses the reference counter.

O.2.2. MbSpaceItem Three-Dimensional Geometrical Object

MbSpaceItem class is declared in space_item.h file.
MbSpaceItem is  an inheritor  of  MbRefItem and TapeBase classes  and it  is  a  parent  class  for  three-

dimensional geometrical objects.
Three-dimensional geometrical objects of C3D kernel include: a point, curves, surfaces, auxiliary objects 

and objects of geometrical model. Please see Figure O.2.2.1.

Figure O.2.2.1.

The following families of 3D geometrical objects are inheritors of MbSpaceItem class:
MbPoint3D — a point or a curve,
MbSurface — a surface,
MbLegend — an auxiliary geometrical object,
MbItem — an object of geometrical model.

The main methods of 3D geometrical objects are:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ), MbMatrix3D
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const  & m, MbRegTransform * iReg = NULL ).

These methods are used to transform a geometrical object. MbRegTransform registrar is used to prevent  
multiple transformations of embedded objects. If an object contains pointers or references to other objects,  
then all embedded objects are also transformed. The registrar should be used for serial transformations of  
several interrelated objects if relationships between them are due to pointers or references to shared objects 
present in them. If the registar is not used during transformation, then multiple transformations of common 
embedded objects are possible.

In addition,  all  geometrical  objects  have  methods  that  permit  to  copy,  check for  coincidence,  check 
whether it's possible to make objects coinciding and to make them coinciding:
MbSpaceItem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceItem & item ),
bool IsSimilar( const MbSpaceItem & item ),
bool SetEqual( const MbSpaceItem & item ).

169



MbRegDuplicate registrar is used to prevent multiple copying of embedded objects. If an object contains  
pointers or references to other objects, all embedded objects are also copied. The registrar should be used to 
copy several interrelated objects in serial manner if the objects have pointers or references to shared objects.  
If the registar is not used for copying, then you can get a set of copies of the same embedded object instead 
of its single copy.

The following methods are used to identify the type of geometrical object:
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family().
These methods return a type from the enumeration of three-dimensional geometric objects.

Methods
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties )
ensure that internal data of geometrical objects is accessible and editable. GetProperties method adds object 
data to properties set as inheritors of MbProperty class.

CalculateWire( double sag,  MbMesh &  mesh) method constructs a polygonal copy of a geometrical 
object that is used for visualization.

O.2.3. MbTopItem Topological Object

MbTopItem class is declared in topology_item.h file.
MbTopItem  class is  an  inheritor  of  MbRefItem and  TapeBase  classes  and  it  is  a  parent  class  for 

topological objects. Topological objects contain a class of named topological objects MbTopologyItem   that 
inherits  MbTopItem  and  MbAttributeContainer  classes.MbTopologyItem class  is  also  declared  in 
topology_item.h file.

C3D geometric kernel works with topological objects shown in Figure O.2.3.1.

170



Figure O.2.3.1.

The following topological objects are the inheritors of MbTopItem class:
MbFaceShell — a set of faces
MbLoop — an edge cycle at face border
MbOrientedEdge — an oriented cycle edge 
MbTopologyItem — a named topological object.

The following objects inherit MbTopologyItem named topological object:
MbVertex — a vertex
MbEdge   — an edge
MbFace — a face.
An edge describing a smooth section that either joins two faces or is a face edge has MbCurveEdge inheritor.

MbAttrContainer attribute container provides work of named topological objects with attributes.
The main methods of named topological objects are listed below:

void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ).

These methods are used when a topological object is transformed; they are also used to work with the 
name and attributes. MbRegTransform registrar is used to prevent multiple transformations of embedded 
objects.  If an object  contains pointers or references to other objects,  then all  embedded objects are also 
transformed.  The  registrar  should  be  used  for  serial  transformations  of  several  interrelated  objects  if  
relationships between them are due to pointers or references to shared objects present in them. If the registar  
is not used during transformation, then multiple transformations of common embedded objects are possible.

A topological  object  has  IsA()  method  used  to  identify  its  type.  The  method  returns  a  type  from 
MbeTopologyType enumeration of topological objects.

171



O.2.4. MbPlaneItem Two-Dimensional Geometrical Object

MbPlaneItem class is declared in plane_item.h file.
MbPlaneItem is  an inheritor  of  MbRefItem and TapeBase classes  and it  is  a parent  class  for  all  2D 

geometrical objects.
C3D kernel includes the following 2D geometrical objects: curves, a multiline and region. Please see  

Figure O.2.4.1.

Figure O.2.4.1.

The following families of 2D geometrical objects are inheritors of MbPlaneItem class:
MbCurve — a two-dimensional curve,
MbMultiline — a multiline,
MbRegion — a region.

The main methods of 2D geometrical objects are:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL, … ),
void Rotate( const MbCartPoint & p, const MbDirection & angle, MbRegTransform * iReg = NULL, … ),
void Transform( const MbMatrix & m, MbRegTransform * iReg = NULL, ... ).

These methods are used to transform a 2D geometrical  object.  MbRegTransform registrar  is  used to  
prevent multiple transformations of embedded objects. If an object contains pointers or references to other 
objects,  then  all  embedded  objects  are  also  transformed.  The  registrar  should  be  used  for  serial 
transformations of several interrelated objects if relationships between them are due to pointers or references 
to  shared  objects  present  in  them.  If  the  registar  is  not  used  during  transformation,  then  multiple  
transformations of common embedded objects are possible.

In addition, all geometrical objects have methods that permit to duplicate, check for coincidence, check 
whether it's possible to make objects coinciding and to make them coinciding:
MbPlaneItem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbPlaneItem & item ),
bool IsSimilar( const MbPlaneItem & item ),
bool SetEqual( const MbPlaneItem & item ).

MbRegDuplicate registrar is used to prevent multiple copying of embedded objects. If an object contains  
pointers or references to other objects, all embedded objects are also copied. The registrar should be used to 
copy several interrelated objects in serial manner if the objects have pointers or references to shared objects.  
If the registar is not used for copying, then you can get a set of copies of the same embedded object instead 
of its single copy.

The following methods are used to identify the type of geometrical object:
MbePlaneType IsA(),
MbePlaneType Type(),
MbePlaneType Family(),
These methods return a type from the enumeration of 2D geometric objects.

172



Methods
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties )
ensure that  internal  data of geometrical  objects are accessible and editable.  GetProperties method adds 
object data to properties set as inheritors of MbProperty class.

173



O.3. TWO-DIMENSIONAL CURVES

Two-dimensional  curves  are  used to  describe  definition area  of  surface  parameters,  to  construct  flat  
sketches, to construct 3D curves on surfaces, curves of surface intersections, and projections of 3D curves on 
surfaces and planes of local coordinate systems. Many 2D curves are similar to 3D ones, the difference is  
that 2D curves use 2D rather than 3D points and vectors. We will  use  bold and italic Roman letters to 
designate vectors, radius vectors of points, and matrices in 2D space.

O.3.1. MbCurve Two-Dimensional Curve

MbCurve abstract class is declared in сurve.h file.
MbCurve 2D curve is an inheritor of MbPlaneItem class. Please see Figure O.3.1.1.

Fig. O.3.1.1.

Two-dimensional curve is an abstract class. The following 2D curves are inheritors of MbCurve class 
realized in C3D geometric kernel:
MbLine – 2D straight line,
MbLineSegment – 2D straight line segment,
MbArc – 2D elliptical arc,
MbPolyline – 2D polyline,
MbNurbs – 2D B-curve (NonUniform Rational B-Spline),
MbBezier – 2D Bezier composite curve,
MbHermit – 2D Hermite curve,
MbCubicSpline – 2D cubic spline,
MbOffsetCurve – 2D equidistant curve,
MbTrimmedCurve – 2D trimmed curve,
MbReparam – 2D reparameterized curve,
MbCharCurve – 2D curve with symbolical coordinate functions,
MbCosinusoid – 2D cosine wave,
MbPointCurve – point curve,
MbProjCurve – projection curve,
MbContour – 2D contour (composite curve)
MbContourWithBreaks – two-dimensional contour with breaks.

MbCurve two-dimensional curve is a vector function

of  t scalar parameter with values belonging to [tmin,  tmax] segment. The curve is a continuous projection of 
some part of the number axis to 2D space. Two-dimensional space is XY plane of the local 3D coordinate 
system and the definition area of surface parameters. Curve parameter variation area is [ tmin, tmax] segment in 
one-dimensional space. u(t), v(t) coordinates of a point at curve(t) are single-valued continuous functions of t 
parameter.

tmin and tmax limit values of parameter definition area are received using double  GetTMin() and double 



GetTMax() curve methods, respectively.
A curve shall be called periodic if there is p>0 such that for curve(tkp)=curve(t), where k is an integer. 

bool  IsClosed() method returns true for a periodic curve. double GetPeriod() method for a periodic curve 
(or a curve that can be extended to become periodic) returns p period. Periodic curve parameter definition 
area is always limited by one period.

The main method for a curve is:
void PointOn( double & t, MbCartPoint & r ).
It returns r radius vector of the curve point for specified t parameter. Methods
void FirstDer( double & t, MbVector & rt ),
void SecondDer( double & t, MbVector & rtt ),
void ThirdDer( double & t, MbVector & rttt )
respectively return the first (rt), the second (rtt) and the third (rttt) derivatives of the curve radius vector for 
specified  t parameter. These methods adjust the curve parameter if it goes beyond the definition area (an 
exception is a straight line MbLine). If t curve parameter goes beyond [tmin, tmax] segment, then non-periodic 
curves move  t parameter to the nearest limit  tmin or  tmax, and periodic curves add or subtract the required 
number of periods.

Method
void _PointOn( double t, MbCartPoint & r )
returns r radius vector of the curve point for specified t parameter, both inside and outside the definition area 
of  t curve parameter. In general case, a non-periodic curve is extended outside of the parameter definition 
area by tangent in its end point. Periodic curves, arc (MbArc  ), cosine wave (MbCosinusoid), character curve 
(MbCharacterCurve)  and truncated  curve  (MbTrimmedCurve)  within  the  basic  curve  are  th  exceptions. 
Periodic curves are extended cyclically outside of the parameter definition area.
Methods
void _FirstDer( double t, MbVector & rt ),
void _SecondDer( double t, MbVector & rtt ),
void _ThirdDer( double t, MbVector & rttt )
respectively return the first  (rt), the second (rtt) and the third (rttt) derivatives of curve radius vector for 
specified t parameter both inside and outside of the curve definition area.

The сurves reload such methods for 2D geometrical object as follows:
the methods that serve transformation of a geometrical object,
void Move( const MbVector & v, MbRegTransform * iReg = NULL, … ),
void Rotate( const MbCartPoint & p, const MbDirection& angle, MbRegTransform * iReg = NULL, … ),
void Transform( const MbMatrix & m, MbRegTransform * iReg = NULL, ... ),
methods that permit to copy, check for coinciding objects, or check whether it's possible to make objects  
coinciding and that make them coinciding,
MbPlaneItem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbPlaneItem & item ),
bool IsSimilar( const MbPlaneItem & item ),
bool SetEqual( const MbPlaneItem & item ),
methods that return a type from an enumeration of geometric objects,
MbePlaneType IsA(),
MbePlaneType Type(),
MbePlaneType Family(),
methods that ensure access and editing of internal data of the object,
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties ).

All curves other than MbContour and MbContourWithBreaks usually do not have bends. MbContour   and 
MbContourWithBreaks are composite curves that may have bends at the points where the segments join.

O.3.2. MbLine Two-Dimensional Straight Line

175



MbLine class is declared in cur_line.h file.
MbLine two-dimensional straight line is described by  MbCartPoint origin initial  point and  MbVector 

direction directional vector. Please see Figure O.3.2.1.

Fig. O.3.2.1.

In PointOn(double & t, MbCartPoint & r) method, radius vector of r straight line is described by vector 
function

r(t) = origin + t direction.

Straight line behaves as an infinite object, despite the fact that it has tmin and tmax parameter limits. Note 
that unlike all other curves, a straight line does not adjust  t parameter when it goes beyond tmin and tmax 
limits in radius vector and its derivatives calculation methods.

O.3.3. MbLineSegment Two-Dimensional Straight Line Segment

MbLineSegment class is declared in cur_line_segment.h file.
Two-dimensional MbLineSegment straight line segment is described by MbCartPoint point1 initial point 

and MbCartPoint point2 end point. Please see Figure O.3.3.1.

Fig. O.3.3.1.

In PointOn( double & t, MbCartPoint & r ) method, radius vector of r segment is described by 

r(t) = (1 – t) point1 + t point2 vector function.

Segment  parameter  definition  area  ranges  from  zero  to  one.  point1  initial  point  of  the  segment 
corresponds to tmin=0 parameter, point2 end point of the segment corresponds to tmax=1 parameter.

O.3.4. MbArc Two-Dimensional Elliptical Arc

MbArc class is declared in cur_arc.h file.
Two-dimensional elliptical arc is an inheritor of MbCurve curve. MbArc elliptical arc is described by a 

and b radii, trim1 and trim2 angles and sense direction in MbPlacement position local coordinate system.
trim1 and  trim2 angles are measured along the arc from  position.axisX vector towards  position.axisY 

vector. trim1 and trim2 angles shall be designated as "trimming parameters." Trimming parameters equal to  
zero and 2π correspond to a point on  position.axisX axis.  t curve parameter takes values in 0≤t≤|trim2–
trim1|. The curve may be periodic. |trim2–trim1|=2π holds for a periodic curve. sense parameter takes values 
+1 or -1 and indicates arc construction direction. If  sense=+1, then trim1<trim2 and the arc is constructed 
from trimm1 parameter in angle increase direction. If sense=–1, then trim1>trim2 and the arc is constructed 
from trimm1 in angle decrease direction.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

176



r(t) = position.origin +
a cos(trim1+(sense)t) position.axisX + b sin(trim1+(sense)t) position.axisY vector function.

Elliptical arc is shown in Figure O.3.4.1.

Fig. O.3.4.1.

Curve radii should be positive: a>0, b>0. The following inequalities should hold for trimming parameters: 
trim1<trim2 if sense=1 and trim 1> trim 2 if sense=–1.

position local coordinate system may be either left- or right-handed. If local coordinate system is right-
handed and sense=+1, or if local coordinate system is right-handed and sense=–1, then the arc is directed 
counter-clockwise.

O.3.5. MbPolyline Two-Dimensional Polyline

MbPolyline class is declared in cur_polyline.h file.
Polyline is an inheritor of PolyCurve curve. MbPolyline two-dimensional polyline is described by  the 

number of segments (segmentsCount), SArray<MbCartPoint>pointList set of control points and closed curve 
periodicity sign.

The curve goes through pointList[i], i=0,...,segmentsCount. set of points when t=0,...,segmentsCount. If 
closed=true, then the curve contains a segment that connects the last point of pointList[segmentsCount-1] set 
with the initial point of pointList[0] set. t curve parameter takes values in 0≤t≤segmentsCount.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = pointList[i] (1–w) + pointList[i+1] w vector function,

where  ,  and  titti+1.  Polyline is  the simplest  curve constructed based on a set  of  points.  It  

consists of segments that consequently connect control points. The curve may be periodic. segmentsCount is 
a period of the periodic curve. Periodic polyline is shown in Figure O.3.5.1.

177



Fig. O.3.5.1.

Derivatives of the curve at control points (when parameter values are integers) lose the continuity by 
length and direction. Derivatives of the curve in control points have special length and direction.

O.3.6. MbNurbs Two-Dimensional NURВS-Curve

MbNurbs class is declared in cur_nurbs.h file.
B-curve or NURBS-curve is an abbreviation of NonUniform Rational B-Spline. The curve is an inheritor 

of MbPolyCurve curve. The curve is described by SArray<MbCartPoint>pointList set of two-dimensional 
control points,  weights set of weights of two-dimensional control points,  knots nodal vector,  degree spline 
order, form curve form parameter and closed curve periodicity sign. There are some other parameters of the 
curve that are not mandatory, they are used to speed up curve methods.

The curve is constructed based on B-splines.  knots nodal vector is a non-decreasing sequence of real 
numbers that defines curve parameter definition area and the form of the curve. In general, form curve form 
parameter is equal to ncf_Unspecified; and in particular cases it stores data on the original curve that was 
used to make a NURBS-copy. degree of a NURBS-curve is equal to the degree of divided differences used to 
calculate  B-splines.  Let  node  vector  have  knotsCount elements,  and  the  set  of  control  points  contain 
pointsCount elements.  For  non-periodic  NURBS-curve,  the  following equation holds  for  the  number  of 
elements in the sets:  knotsCount=pointsCount+degree. For periodic NURBS-curve, the following equation 
holds for the number of elements in the sets: knotsCount=pointsCount+2degree–1.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r ( t )=
∑
j=0

pointsCount−1

N
jdeg ree

(t )weight [ j ]pointList [ j ]

∑
j=0

pointsCount−1

N
jdeg ree

(t )weight [ j ]

vector function,

where Nj
order(t) are B-splains of degree for jth control point from pointList[j] list. NURBS-curve of the fourth 

order is shown in Figure O.3.6.1.

178



Fig. O.3.6.1.

The curve may be periodic. Periodic NURBS-curve is shown in Figure O.3.6.2.

Fig. O.3.6.2.

t curve  parameter  takes  values  in  tmin≤t≤tmax range,  where  tmin=knots[degree–1], 
tmax=knots[knotsCount–degree].

Form of NURBS-curve depends on location and weight of control points, as well as values of the nodal  
vector. In general, NURBS-curve does not go through  pointList[i], i=0,...,pointsCount–1 set of points. In 
order that non-closed NURBS-curve goes through extreme control points, it is required that the first degree 
elements and the last degree elements of knots node vector should coincide. Other things equal, the distance 
between the curve and the control point depends on the weight of the control point.

Any  curve  can  construct  its  NURBS-copy  using  NurbsCurve(  const MbNurbsParameters  & 
tParameters ) virtual method.

O.3.7. MbHermit Two-Dimensional Hermite Curve

MbHermit class is declared in cur_hermit.h file.
Hermite  two-dimensional  curve  is  an  inheritor  of  MbPolyCurve  curve.  A curve  is  described  by 

SArray<MbCartPoint>pointList set of control points, SArray<MbVector>vectorList set of curve derivatives 
in control points,  tList set of parameter values in curve control points,  splinesCount Hermite cubic splines 
and closed curve periodicity sign. There are some other parameters of the curve that are not mandatory, they 
are used to speed up curve methods.

If tList[i],  i=0,1,...,splinesCount, then the Hermite curve goes through pointList[i] control point and has 

179



vectorList[i] derivative in it. A curve is constructed on the basis of splinesCount smoothly joined 2D third-
order Hermite splines. Each Hermite cubic spline describes a segment of the curve between two neighboring 
control points. Each Hermite cubic spline is defined by two extreme points and two derivatives of the curve  
in these points.

When a radius vector of the Hermite curve point is calculated, we first use the value of t parameter to find 
out the i number of the working segment (Hermite cubic spline number) from tList[i]ttList[i+1] condition. 
The radius vector of the curve is calculated as the radius vector of the found segment for its local parameter 
w that is defined by tList[i] andtList[i+1].

In PointOn( double & t,  MbCartPoint & r ) method, r radius vector of the curve is described by vector 
function of the found segment for its local parameter w:

vector function,

where , and  tList[i]ttList[i+1]. A Hermite curve is shown in Figure O.3.7.1.

Fig. O.3.7.1.

t curve parameter takes values in  tmin≤t≤tmax section, where  tmin=tList[0],  tmax=tList[splinesCount]. 
The curve may be periodic.

Curve form depends on location of control points, curve derivatives in control points, and on tList set of 
parameter values in control points. If a curve is constructed using only control points, then the values of  
curve parameter in tList[i], i=0,1,...,splinesCount control points are directly proportional to distance between 
points, and vectorList[i],  i=1,2,...,splinesCount–1 derivatives are calculated by constructing a parabola that 
goes  through  three  neighboring  points  (pointList[i–1],  pointList[i],  pointList[i+1])  in  corresponding 
parameter values (tList[i–1], tList[i], tList[i+1]), then parabola derivative is calculated in the middle point.

O.3.8. MbBezier Two-Dimensional Bezier Composite Curve

MbBezier class is declared in cur_bezier.h file.
Bezier  2D  composite  curve  is  an  inheritor  of  MbPolyCurve  curve.  A  curve  is  described  by 

SArray<MbCartPoint>pointList set  of  control  points,  splinesCount number  of  Bezier  curves  and  closed 
curve periodicity sign. There are some other parameters of the curve that are not mandatory, they are used to  
speed up curve methods.

Curve is  constructed on the basis of  splinesCount third-order  smoothly meeting Bezier  curves.  Each 
Bezier curve is defined by four control points and it goes through only two extreme points. A composite 
curve is used to construct a spline that goes through specified points. Specified points are joining points 
of third-order Bezier curves. A pair of internal control points for each third-order Bezier curve should be 
defined taking intp account the fact that this curve should smoothly meet with neighboring curves. For a 

180



composite curve, the number of control points is equal to 3(splinesCount+1). For a non-periodic composite 
curves, the first pointList[0] control point and the last one are not used.

Every third-order Bezier curve increases composite curve parameter by one. When the radius vector is  
calculated, we first use the value of t parameter to find the number of the working segment (number of third-
order Bezier curve) that is equal to the maximum integer not exceeding  t.  Let the number of third-order 
Bezier curve be equal to  n. Then the fractional part of  w=t–n parameter is defined. Radius vector of the 
composite curve is calculated as the radius vector of the found segment for its local parameter w.

In PointOn( double & t,  MbCartPoint & r ) method, r radius vector of the curve is described by vector 
function of the found segment for its local parameter w:

r ( t )=
∑
j=0

pointsCount−1

N
jdeg ree

(t )weight [ j ]pointList [ j ]

∑
j=0

pointsCount−1

N
jdegree

(t )weight [ j ]

vector function,

where w=t–n, n≤t≤n+1,  0≤w≤1, are third-order Bernstein functions for  jth, 

j=0,1,2,3, pointList[3n+j] control point of the found segment number n. Bezier composite curve is shown in 
Figure O.3.8.1.

Fig. O.3.8.1.

t curve parameter takes values in 0≤t≤splinesCount segment. The curve may be periodic. The period of 
the periodic curve is equal to splinesCount.

If the parameter takes integer values, then the curve goes through control points. For example, if t=n, then 
the curve goes through pointList[3n], n=0,1,...,splinesCount control point. Derivatives of the curve in joining 
points of third-order Bezier curves (at integer parameter values) lose the continuity by length.

O.3.9. MbCubicSpline Two-Dimensional Cubic Spline

MbCubicSpline class is declared in cur_cubic_spline.h file.
Two-dimensional  cubic  spline  is  an  inheritor  of  MbPolyCurvecurve.  A  curve  is  described  by 

SArray<MbCartPoint>pointList set  of  2D  control  points,  SArray<MbVector>vectorList set  of  second 
derivatives of the curve in control points,  tList set of parameter values in curve control points, maximum 
index value of  splinesCount set  of  parameters,  and  closed curve periodicity sign.  There  are  some other 
parameters of the curve that are not mandatory, they are used to speed up curve methods.

If  tList[i],  i=0,1,...,splinesCount,  then the cubic spline goes through  pointList[i] control point and has 
vectorList[i] second derivative in it. The curve is constructed so that at transition from pointList[i] point to 

181



pointList[i+1],  the  second  derivative  of  curve  radius  vector  varies  linearly  and  takes  values  from 
vectorList[i] to vectorList[i+1].

When radius vector of composite curve is calculated,  we first  use the value of  t parameter to find  i 
number of the working segment from tList[i]ttList[i+1] condition. Curve radius vector is calculated using 
pointList[i], pointList[i+1], vectorList[i], vectorList[i+1] values of the found segment for w local parameter, 
that is defined based on tList[i] andtList[i+1].

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

vector function,

where  , and  tList[i]ttList[i+1]. A cubic spline that was constructed based on the 

same control points as Hermite composite curve is shown in Figure O.3.9.1.

Fig. O.3.9.1.

t curve parameter takes values in  tmin≤t≤tmax section, where  tmin=tList[0],  tmax=tList[splinesCount]. 
The curve may be periodic.

Curve form depends on the location of control points and tList set of parameter values in control points. If 
a  curve  is  constructed  using  only  control  points,  then  the  values  of  curve  parameter  in  tList[i], 
i=0,1,...,splinesCount control points are directly proportional to distance between points, and  vectorList[i], 
i=1,2,...,splinesCount–1 second derivatives are calculated by solving a system of equations.

O.3.10. MbTrimmedCurve Two-Dimensional Truncated Curve

MbTrimmedCurve class is declared in cur_trimmed_curve.h file.
Two-dimensional  truncated  curve  is  described  by  MbCurve*  basisCurve base  curve,  trim1  initial 

truncating parameter of the base curve, trim2 end truncating parameter of the base curve, and the sense sign 
of coincidence of directions of the base curve and the truncated curve.

Truncated curve coincides with the base curve within a segment defined by trim1 and trim2 parameters; at 
the same time, it can have a direction opposite to that of the segment. If sense=1, then trim1<trim2, then the 
directions  of  truncated curve  and the  base curve  are  the  same.  If  sense=–1,  then  trim2<trim1 then the 
direction of the trimmed curve is opposite to that of the base curve.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = basisCurve(trim1+sense.t).

182



A truncated curve is shown in Figure O.3.10.1.

Fig. O.3.10.1.

t curve parameter takes values in 0≤t≤sense(trim2–trim1) range.
Theoretically, a truncated curve can be used to change the direction of the curve, but it is recommended to 

use Inverse() method.
A truncated curve permits you to change location of the initial point of periodic curve. In this case, the 

base curve should be periodic and trim2=trim1+period. In this case, a truncated curve will also be periodic.
A trimmed curve can't use other trimmed curve as a base curve; a base curve of other truncated curve 

should be used subject to corresponding recalculation of truncation parameters.
Every curve can construct its truncated copy using  Trimmed( double t1, double t2, int sense ) virtual 

method.

O.3.11. MbReparamCurve Two-Dimensional Reparameterized Curve

MbReparamCurve class is declared in cur_reparam_curve.h file.
Two-dimensional reparameterized curve is described by MbCurve*  basisCurve base curve,  tmin initial 

parameter, tmin end parameter, and dt derivative of the base curve parameter with respect to the parameter of 
reparameterized curve.

Reparameterized  curve  almost  completely coincides  with  the  base  curve,  but  it  has  other  parameter 
variation area.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = basisCurve(v(t)) function,

where  ,  bmin,  bmax are  the  limit  values  of  the  base  curve 

parameter definition area.
t curve parameter takes values in tmin≤t≤tmax range.
Reparameterized  curve  almost  completely coincides  with  the  base  curve,  but  it  has  other  parameter 

definition area. A curve with modified length parameter is used to align parameter variation areas of two 
curves. For example, if you want a segment and an arc to have the same parameter variation area, then it is  
required  to  create  a  reparameterized curve on  the  basis  of  another  curve  from the list  using parameter  
variation area of the another curve.

A reparameterized curve should't use another reparameterized curve as the base curve; the base curve of  
another reparameterized curve should be used.

183



O.3.12. MbOffsetCurve Two-Dimensional Equidistant Curve

MbOffsetCurve class is declared in cur_offset_curve.h file.
Two-dimensional equidistant curve is described by MbCurve* basisCurve base curve, MbVector   distance 

offset, dmin modified minimum parameter of base curve, dmax modified maximum parameter of base curve, 
tmin minimum parameter  of  base curve,  tmax maximum parameter  of  base curve,  MbMatrix transform 
transformation matrix and closed curve periodicity sign. There are some other parameters of the curve that 
are not mandatory, they are used to speed up curve methods.

Two-dimensional  equidistant  curve  is  a  curve  having  corresponding  parameter  points  are  set  off  at 
distance from the corresponding point of basisCurve base curve. Parameter variation area of 2D equidistant 
curve differs from parameter variation area of base curve by dmin for the minimum value and by dmax for 
the maximum value.

Radius vector of a point of equidistant curve is calculated as follows. Point and normal are calculated for  
the specified parameter of the base curve. Then the point is set off by distance along the normal to the curve.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = basisCurve(t) + normal(t) .distance vector function,

where normal(t) is the normal to the base curve that was obtained by rotating the tangent of the base curve at  
the given point  by 90 degrees counterclockwise.  Equidistant  curve and base curve are shown in Figure 
O.3.12.1.

Fig. O.3.12.1.

t curve parameter  takes  values  in  tmin+dmin≤t≤tmax+dmax range. If  the  parameter  goes  beyond the 
definition area, then the radius vector of a point in the base curve is calculated using _PointOn( double t, 
MbCartPoint & r ) method. If  distance=0,  dmin=0,  dmax=0, then the equidistant curve coincides with the 
base curve.

An  equidistant curve may not  use other  equidistant curve as the base curve; the base curve of other 
equidistant curve should be used subject to corresponding recalculation of the offset.

Every curve can construct an equidistant curve using Offset( double distance ) virtual method.

O.3.13. MbCharCurve Two-Dimensional Character Curve

MbCharacterCurve class is declared in cur_character_curve.h file.
Character curve is described by xFunction,  yFunction coordinate functions, MbPlacement position local 

coordinate  system,  transform transformation  matrix,  tmin and  tmax limit  values  of  curve  parameter 
definition  area,  closed curve  periodicity sign  and  coordinateType type  of  coordinate  system (Cartesian, 
polar), in which coordinate functions are defined. There are some other parameters of the curve that are not 
mandatory, they are used to speed up curve methods.

xFunction(t),  yFunction(t) coordinate functions of the character curve are scalar functions of  t common 
parameter  that  are  defined  as  character  expressions.  Lexical  analysis  was  conducted  for  each  character  

184



expression.  In  addition,  a tree  was constructed to  calculate  values  of  character  expression for  specified 
parameters, as well as derivatives of character expressions with respect to the parameter.  t curve parameter 
has values in: tmin≤t≤tmax range.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = [xFunction(t)   yFunction(t)] vector function.

A character curve is shown in Figure O.3.13.1.

Fig. O.3.13.1.

The curve may be periodic. Character expressions in curve definition area should describe continuous and 
single-valued functions.

O.3.14. MbCosinusoid Two-Dimensional Cosine Wave

MbCosinusoid class is declared in cur_cosinusoid.h file.
Two-dimensional cosine wave is described by MbPlacement position local coordinate system, frequency 

cyclic  frequency,  phase initial  phase,  amplitude amplitude,  tmin minimum  curve  parameter  and  tmax 
maximum curve parameter. There are some other parameters of the curve that are not mandatory, they are  
used to speed up curve methods.

Two-dimensional cosine wave is a cosine function, its argument is given along position.axisX vector; the 
value of the function is plotted along position.axisY vector. The function has amplitude amplitude, frequency 
frequency and phase initial phase.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = position.origin +
(((tmin+t–phase) / frequency) position.axisX) + (amplitude cos(tmin+t) position.axisY) vector function.

Cosine wave is shown in figure O.3.14.1.

185



Fig. O.3.14.1.

t curve  parameter  takes  values  in  tmin≤t≤tmax range.  The  following  inequality  should  hold  for 
parameters: tmin<tmax. The curve can't be periodic. Amplitude and frequency of the curve should be greater 
than zero: amplitude>0, frequency>0.

position local coordinate system may be either left- or right-handed. A cosine wave is used to describe 
intersection of a cylindrical surface and a plane.

O.3.15. MbPointCurve Two-Dimensional Curve-Point

MbPointCurve class is declared in cur_point_curve.h file.
Two-dimensional curve-point is described by MbCartPoint point,  tmin minimum curve parameter,  tmax 

maximum curve parameter and closed curve periodicity sign.
In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = point function.

t curve  parameter  takes  values  in  tmin≤t≤tmax range.  The  curve  may  be  periodic.  The  following 
inequality should hold for parameters: tmin<tmax.

Two-dimensional  curves-points  are  used  in  pair  with other  two-dimensional  curve  that  describes  the 
intersection of surfaces, one of which has a special point such as a pole. tmin, tmax, closed parameters of the 
curve-point coincide with parameters of the two-dimensional curve that is used in pair with the curve-point.

O.3.16. MbProjCurve Two-Dimensional Projection Curve

MbProjCurve class is declared in cur_projection_curve.h file.
Two-dimensional  projection curve is  described by  MbCurve3D*  spaceCurve 3D curve,  MbSurface* 

surface surface and MbCurve* curve 2D curve. There are some other parameters of the curve that are not 
mandatory, they are used to speed up curve methods.

Two-dimensional  projection  curve  is  a  projection  of  spaceCurve 3D  curve  to  surface,  that  is 
approximately described by curve 2D curve in surface parameter definition area. Parameter definition areas 
of  spaceCurve and  curve curves are the same.  curve 2D curve is usually a spline, its control points are 
received by projecting points of spaceCurve 3D curve to surface. Parameterization of curve is aligned with 
parameterization of the 3D curve in control points.  curve 2D curve can be located outside of the surface 

186



parameter definition area.
In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = [u  v] vector function,

where u, v are parameters of projection of spaceCurve(t) point to surface. Initial approximation of u and v 
parameters are calculated using the following method: curve–>PointOn(t,point), u=point.x, v=point.y. Then 
u and v parameters are improved by iterative method based on the following equations

deriveU . (spaceCurve(t) – surface( u, v )) = 0,
deriveV . (spaceCurve(t) – surface( u, v )) = 0,

where  deriveU and  deriveV are partial derivatives of surface radius vector, they are calculated using the 
surface–>_DeriveU(u,v,deriveU) and surface–>_DeriveV(u,v,deriveV) methods, respectively. A projection 
curve is shown in Figure O.3.16.1.

Fig. O.3.16.1.

A projection curve is used to accurately describe a projection of 3D curve on a surface.

O.3.17. MbContour Two-Dimensional Contour

MbContour class is declared in cur_contour.h file.
MbContour 2D contour is described by RPArray<MbCurve  >segments set of sequentially joined curves 

and closed curve periodicity sign.
Two-dimensional contour is a composite curve. Unlike other curves, a contour may have kinks. A curve 

that creates a contour will  be called a segment. The following conditions are met for contour segments:  
initial  point  of  each successive segment  coincides  with the  end point  of  the previous one.  For  periodic 
contour, initial point of the first segment coincides with the end point of the last one. In general, contour  
derivatives have discontinuities by length and direction at joining points of segments.

Initial value of contour parameter is zero: tmin=0. Parametric length of a contour is equal to the sum of the 

lengths of parametric lengths of its segments:  , where wimin and wimax are minimum and 
maximum values of the ith segment parameter. When radius vector of a point of the contour is calculated, we 
first use parameter value to determine the working segment and the value of its local parameter, and then we 
calculate a radius vector of the working segment, which is a radius vector of the contour.

In PointOn( double & t, MbCartPoint & r ) method, the radius vector of r curve is described by 

r(t) = segments[k](wk) vector function

where  segments[k](wk)  is  the  working  segment  of  the  kth  contour,  wk is  the  parameter  of  the  working 

187



segment that is equal to:  . The  kth segment is defined by the value of  t 

parameter of the contour according to condition , where  wimin and 

wimax are  minimum and  maximum values  of  the  ith  segment  parameter.  A contour  is  shown in  Figure 
O.3.17.1.

Fig. O.3.17.1.

A 2D contour can't  be used as a segment of other 2D contours.  If other contours should be used to  
construct a contour, then such initial contours should be considered as a set of curves rather than a single  
curve.

188



O.4. CURVES

Curves belong to MbSpaceItem   family of three-dimensional geometric objects. All curves have the same 
parent class MbCurve3D. C3D geometric kernel uses curves that are constructed using analytic functions, by 
set of points, based on curves and based on surfaces. Curves are used to construct surfaces and auxiliary 
elements in a geometric model. We'll use bold Latin letters to designate vectors, radius vectors of points, and 
matrices in three-dimensional space.

O.4.1. MbCurve3D Curve

MbCurve3D class is declared in curve3d.h file.
MbCurve3D curve is an inheritor of MbSpaceItem class, see Figure O.4.1.1.

Fig. O.4.1.1.

The curve is an abstract class. The following curves are inheritors of MbCurve class in C3D geometric  
kernel:
MbLine3D – a straight line
MbLineSegment3D – a straight line segment
MbArc3D – an elliptical arc
MbPolyline3D – a polyline
MbNurbs3D – a B-curve (NonUniform Rational B-Spline)
MbBezier3D – a Bezier composite curve
MbHermit3D – a Hermite curve
MbCubicSpline3D – a cubic spline
MbOffsetCurve3D – a equidistant curve
MbTrimmedCurve3D – a trimmed curve
MbReparamCurve3D – a reparametrized curve
MbCharacterCurve3D – a curve with symbolical coordinate functions
MbConeSpiral – a conical spiral
MbCurveSpiral – a spiral with a rectilinear axis and variable radius
MbCrookedSpiral – a spiral with axis in the form of a flat curve
MbBridge – a Hermite spline connecting two curves
MbContour3D – a contour (composite curve)
MbPlaneCurve – a flat curve in 3D space
MbSurfaceCurve – a curve on a surface
MbSilhouetteCurve – a silhouette curve of a surface
MbContourOnSurface – a contour on a surface
MbContourOnPlane – a contour on a plane
MbSurfaceIntersectionCurve – an intersectional curve of surfaces.

MbCurve3D is a vector function



of  t scalar parameter taking values in [tmin,  tmax] range. The curve is a continuous projection of a part of 
number axis into three-dimensional space. Curve parameter range is [tmin,  tmax] range in one-dimensional 
space.  x(t),  y(t),  z(t) coordinates of a point in  curve(t) curve are single-valued continuous functions of  t 
parameter.

tmin and tmax limit values of parameter range are received using double GetTMin() and double GetTMax() 
curve methods, respectively.

A curve is referred as periodic if there is p>0 such that curve(tkp)=curve(t) holds, where k is an integer. 
bool  IsClosed() method returns true for a periodic curve. double  GetPeriod() method returns  p period of 
periodic curve (or a curve that can be extended and made periodic). Periodic curve parameter range is always 
limited to one period.

The main method for the curve is
void PointOn( double & t, MbCartPoint3D & r ).
It returns r radius vector of curve point for specified t parameter. 
void FirstDer( double & t, MbVector3D & rt ),
void SecondDer( double & t, MbVector3D & rtt ),
void ThirdDer( double & t, MbVector3D & rttt ) methods
return respectively the first (rt), the second (rtt) and the third (rttt) derivatives of curve radius vector for 
specified parameter (t).  These methods adjust curve parameter if it  goes beyond the range (except for a 
straight line  MbLine3D). If curve parameter (t) goes beyond [tmin,  tmax] range, then a non-periodic curve 
moves the parameter (t) to the nearest  limit  tmin or  tmax,  and a periodic curve adds or subtracts required 
number of periods.
void _PointOn( double t, MbCartPoint3D & r ) method
returns radius vector (r) of curve point for specified parameter (t) both inside and outside curve parameter 
range. In general, a non-periodic curve as extended outside its parameter range along the tangent [to the  
curve]  in  the  end  point.  Periodic  curve,  an  arc  (MbArc3D  ),  a  spiral  (MbSpiral),  a  character  curve 
(MbCharacterCurve3D)  and  a  trimmed  curve  (MbTrimmedCurve3D)  within  base  curve  limits  are  the 
exceptions. A periodic curve is extended cyclically beyond the limits of its parameter range. 
void _FirstDer( double t, MbVector3D & rt ),
void _SecondDer( double t, MbVector3D & rtt ),
void _ThirdDer( double t, MbVector3D & rttt ) methods
respectively return the first  (rt),  the  second (rtt)  and the third  rttt derivatives  of  curve radius  vector  for 
specified t parameter both inside and outside curve range.

The curves reload the following 3D geometrical object methods:
the methods involved in transformation of a geometrical object,
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check for coinciding objects, check whether it's possible to make objects  
coinciding and make them coinciding:
MbSpaceItem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceItem & item ),
bool IsSimilar( const MbSpaceItem & item ),
bool SetEqual( const MbSpaceItem & item ),
the methods that return a type from enumeration of geometric objects,
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family(),
the methods that ensure access and editing of object internal data,
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties ),
the method that fills up a polygonal copy of a geometrical object,
CalculateWire( double sag, MbMesh & mesh ).

191



All curves besides MbContour3D, MbContourOnSurface  , MbContourOnPlane usually don't have bends. 
MbContour3D  , MbContourOnSurface  , MbContourOnPlane are composite curves that may have bends in the 
points where their constituting segments join.

O.4.2. MbLine3D Straight Line
 

MbLinet3D class is declared in cur_line_3d.h file.
MbLine3D straight line is described by MbCartPoint3D origin initial point and MbVector3D direction 

directional vector, see Figure O.4.2.1.

Fig. O.4.2.1.

In PointOn(double & t, MbCartPoint3D & r) method, radius vector of r straight line is described by

r(t) = origin + t direction vector function.

The straight line behaves as an infinite object, but it has tmin and tmax parameter limits. Note that unlike 
all other curves, a straight line doesn't adjust  t parameter when it goes beyond tmin and  tmax limits when 
radius vector and its derivatives are calculated using corresponding methods.

O.4.3. MbLineSegment3D Straight Line Segment
 

MbLineSegment3D class is declared in cur_line_segment_3d.h file.
MbLineSegment3D  straight  line  segment  is  described  by  MbCartPoint3D point1 initial  point  and 

MbCartPoint3D point2 end point, see Figure O.4.3.1.

Fig. O.4.3.1.

In PointOn( double & t, MbCartPoint3D & r ) method, radius vector of r segment is described by

r(t) = (1 – t) point1 + t point2 vector function.

Segment parameter definition area ranges from zero to one. point1  segment initial point corresponds to 
tmin=0 parameter, and point2 segment end point corresponds to tmax=1 parameter.

O.4.4. MbArc3D Elliptical Arc
 

MbArc3D class is declared in cur_arc_3d.h file.
An elliptical arc is an inheritor of  MbCurve3D curve. MbArc3D elliptical arc is described by  a and  b 

radii, as well as trim1 and trim2 angles defined in MbPlacement3D position local coordinate system.

192



trim1 and  trim2 angles are measured along the arc from position.axisX vector towards  position.axisY 
vector. trim1 and trim2 angles shall be designated as "trimming parameters". Trimming parameters equal to  
zero and 2π correspond to a point on position.axisX axis. t curve parameter takes values in 0≤t≤trim2–trim1 
range. The curve may be periodic. trim2–trim1=2π holds for a periodic curve.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = position.origin +
a cos(trim1+t) position.axisX + b sin(trim1+t) position.axisY vector function.

An elliptical arc is shown in Figure O.4.4.1.

Fig. O.4.4.1.

Curve radii should be greater than zero:  a>0, b>0. The following inequalities should hold for trimming 
parameters: trim1<trim2.

position local coordinate system may be either right- or left-handed.

O.4.5. MbPolyline3D Polyline

MbPolyline3D class is declared in cur_polyline3d.h file.
A  polyline  is  an  inheritor  of  MbPolyCurve3D  curve.  MbPolyline3D  polyline  is  described  by 

segmentsCount number of segments, SArray<MbCartPoint3D>pointList set  of  control  points and  closed 
curve periodicity sign.

The  curve  goes  through  pointList[i],  i=0,...,segmentsCount.  set  of  points  at  t=0,...,segmentsCount  
parameter  values. If  closed=true, then  the  curve  contains  a  segment  connecting  the  last  point  of 
pointList[segmentsCount-1] set with the initial point of pointList[0] set.  t curve parameter takes values in 
0≤t≤segmentsCount range.  

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = pointList[i] (1–w) + pointList[i+1] w vector function,

where , and titti+1. A polyline is the simplest curve constructed based on a set of points. It 

consists of segments that consequently connect the control points. A polyline is shown in Figure O.4.5.1.

193



Fig. O.4.5.1.

The curve may be periodic.  segmentsCount is a period of periodic curve. Derivatives of the curve in 
control points (when parameter values are integers) lose continuity by length and direction. A derivative of  
the curve in a control point has special length and direction.  A polyline has a number of useful features: 
minimum amount of computation is required to work with it; projection of polyline will also be a polyline.

O.4.6. MbNurbs3D NURВS-Curve
 

MbNurbs3D class is declared in cur_nurbs3d.h file.
NURBS-curve  is  an  acronym  of  NonUniform Rational B-Spline.  The  curve  is  an  inheritor  of 

MbPolyCurve3D.  The  curve  is  described  by  SArray<MbCartPoint3D>pointList set  of  control  points, 
weights set of control point weights, knots node vector, degree spline order, form curve parameter and closed 
curve periodicity sign. There are some other parameters of the curve that are not mandatory, they are used to  
speed up curve methods.

The curve is  constructed based on B-splines.  knots node vector is a non-decreasing sequence of real 
numbers that defines curve parameter range and curve shape. In general, form curve shape parameter is equal 
to ncf_Unspecified; in particular cases, it stores original curve data that were used to construct a NURBS-
copy. degree order of NURBS-curve is equal to the order of divided differences used to calculate B-splines.  
Let node vector have knotsCount elements, and let the set of control points contain pointsCount elements. 
For  non-periodic  NURBS-curve,  the  following  equation  holds  for  the  number  of  elements  in  sets:  
knotsCount=pointsCount+degree. For periodic NURBS-curve, the following equation holds for the number 
of elements in sets: knotsCount=pointsCount+2degree–1.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

vector  function,  where  Nj
degree(t)  is  degree order  B-splines  for  the  jth  control  point  from pointList[j]. 

NURBS-curve is shown in Figure O.4.6.1.

194



Fig. O.4.6.1.

t curve  parameter  takes  values  in  tmin≤t≤tmax range,  where  tmin=knots[degree–1], 
tmax=knots[knotsCount–degree]. The curve may be periodic. A periodic NURBS-curve is shown in Figure 
O.4.6.2.

Fig. O.4.6.2.

The shape of NURBS-curve depends on location and weight of control points, as well as node vector 
values. In general, NURBS-curve does not go through pointList[i], i=0,...,pointsCount–1 set of points. For 
non-closed NURBS-curve to go through extreme control points it is required that the first  degree elements 
and the last  degree elements of  knots node vector coincide. Other things equal, the distance between the 
curve and the control point depends on the weight of the control point.

NURBS-curve  can  be  constructed  by  any  curve  using  NurbsCurve(  const MbNurbsParameters  & 
tParameters ) virtual method.

O.4.7. MbHermit3D Hermite Curve

MbHermit3D class is declared in cur_hermit3d.h file.
Hermite  curve  is  an  inheritor  of  MbPolyCurve3D.  The  curve  is  described  by 

SArray<MbCartPoint3D>pointList set  of  control  points,  SArray<MbVector3D>vectorList set  of  curve 
derivatives in control points,  tList set of parameter values in curve control points,  splinesCount Hermite 
cubic splines and closed curve periodicity sign. There are some other parameters of the curve that are not 

195



mandatory, they are used to speed up curve methods.
At tList[i], i=0,1,...,splinesCount value, a Hermite curve goes through pointList[i] control point and it has 

vectorList[i] derivative in it. The curve is constructed on the basis of splinesCount smoothly adjoined third-
order Hermite splines. Each Hermite cubic spline describes a section of the curve between two neighboring 
control points. Each Hermite cubic spline is defined by two extreme points and two derivatives of the curve  
in these points.

When radius vector of Hermite curve point is calculated, we first use the value of t parameter to find i, 
working segment number (Hermite cubic spline number ) from tList[i]ttList[i+1]. Curve radius vector is 
calculated as a radius vector of the found segment for its local parameter (w) that is defined from tList[i] 
andtList[i+1].

In PointOn( double & t,  MbCartPoint3D & r ) method,  r curve radius vector is described by a vector 
function of the found segment for its local parameter w

,

where , and tList[i]ttList[i+1]. A Hermite curve is shown in Figure O.4.7.1.

Fig. O.4.7.1.

t curve parameter takes values in tmin≤t≤tmax range, where tmin=tList[0], tmax=tList[splinesCount]. The 
curve may be periodic.

Curve shape depends on location of control points, derivatives of the curve in control points, as well as on 
tList set of parameter values in control points. If a curve is constructed using control points, only then values  
of  curve  parameter  in  tList[i],  i=0,1,...,splinesCount control  points  are  directly  proportional  to  distance 
between the points, and  vectorList[i],  i=1,2,...,splinesCount–1 derivatives are calculated by constructing a 
parabola through three neighboring points (pointList[i–1], pointList[i], pointList[i+1]) taking into account 
corresponding values of parameter (tList[i–1], tList[i], tList[i+1]), and parabola derivative is calculated in the 
midpoint.

O.4.8. MbBezier3D Bezier Composite Curve

MbBezier3D class is declared in cur_bezier3d.h file.
Bezier  two-dimensional  composite curve is an inheritor of MbPolyCurve3D. A curve is  described by 

SArray<MbCartPoint3D>pointList set of control points,  splinesCount number of Bezier curves and closed 
curve periodicity sign. There are some other parameters of the curve that are not mandatory, they are used to  
speed up curve methods.

The curve is constructed on the basis of splinesCount smoothly adjoined third-order Bezier curves. Each 
Bezier curve is defined by four control points and it goes through two extreme points only. A composite 
curve is used to construct a spline that goes through specified points. Specified points are used as joining 

196



points of third-order Bezier curves. A pair of internal control points for each third-order Bezier curve should 
be defined taking into account that the curve should to be smoothly adjoined to neighbor curves. For a  
composite curve the number of control points is equal to 3(splinesCount+1). For non-periodic composite 
curve, the first control point pointList[0] and the last control point are not used.

Every third-order  Bezier  curve  increases  composite  curve  parameter  by one.  When  radius  vector  is  
calculated, we first use the value of t parameter to find working segment number (the number of third-order 
Bezier curve) that is equal to the maximum integer not exceeding  t. Let the number of third-order Bezier 
curve be equal to n. Then a fractional part of w=t–n parameter is defined. Radius vector of composite curve 
is calculated as a radius vector of the found segment for its local parameter (w).

In  PointOn( double & t,  MbCartPoint3D & r ) method,  r curve radius vector is described by a vector 
function of the found segment for its local parameter w

,

where w=t–n, n≤t≤n+1, 0≤w≤1, are third-order Bernstein functions for the jth, 

j=0,1,2,3,  pointList[3n+j] control point of found section number  n. A Bezier composite curve is shown in 
Figure O.4.8.1.

Fig. O.4.8.1.

t curve parameter takes values in 0≤t≤splinesCount range. The curve may be periodic. splinesCount is a 
period of periodic curve.

If the parameter takes integer values, then the curve goes through control points. For example, if t=n, then 
the  curve  goes  through  pointList[3n],  n=0,1,...,splinesCount control  point.  Derivatives  of  the  curve  in 
joining points of third-order Bezier curves (when parameter values are integers) lose continuity by length.

O.4.9. MbCubicSpline3D Cubic Spline
 

MbCubicSpline3D class is declared in cur_cubic_spline3d.h file.
Cubic  spline  is  an  inheritor  of  MbPolyCurve3D.  The  curve  is  described  by 

SArray<MbCartPoint3D>pointList set  of  control  points,  SArray<MbVector3D>vectorList set  of  second 
derivatives of the curve in control points,  tList set of parameter values in curve control points, maximum 
index value of  splinesCount set  of  parameters,  and  closed curve periodicity sign.  There  are  some other 
parameters of the curve that are not mandatory, they are used to speed up curve methods.

197



At tList[i], i=0,1,...,splinesCount parameter values, a cubic spline goes through pointList[i] control point 
and has vectorList[i] second derivative in it. The curve is constructed so that at transition from pointList[i] 
point to pointList[i+1] point the second derivative of curve radius vector changes linearly from vectorList[i] 
to vectorList[i+1].

When radius vector of composite curve is calculated, we first use t parameter value to find the i working 
segment  number  from  tList[i]ttList[i+1].  Curve  radius  vector  is  calculated  using  pointList[i], 
pointList[i+1], vectorList[i], vectorList[i+1] values of the found segment for its local parameter w, that is 
defined from tList[i] andtList[i+1].

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

vector function, where , and tList[i]ttList[i+1]. A cubic spline that was constructed 

by the same control points as composite Hermite curve is shown in Figure O.4.9.1.

Fig. O.4.9.1.

t curve parameter takes values in tmin≤t≤tmax range, where tmin=tList[0], tmax=tList[splinesCount]. The 
curve may be periodic.

Curve shape depends on location of control points and tList set of parameter values in control points. If a 
curve  is  constructed  by  control  points  only,  then  the  values  of  curve  parameter  in   tList[i], 
i=0,1,...,splinesCount control  points  are  directly  proportional  to  distance  between  the  points,  and 
vectorList[i], i=1,2,...,splinesCount–1 second derivatives are calculated by solving a system of equations.

O.4.10. MbTrimmedCurve3D Trimmed Curve
 

MbTrimmedCurve3D class is declared in cur_trimmed_curve3d.h file.
A trimmed curve is described by MbCurve3D * basisCurve base curve, trim1 initial trimming parameter 

of the base curve, trim2 end trimming parameter of the base curve, and sense direction coincidence sign of 
the base curve and the trimmed curve.

The trimmed curve coincides with the base curve within a section defined by trim1 and trim2 parameters, 
but it can have an opposite direction. If sense=1, then trim1<trim2, and the directions of the trimmed curve 
and the base curves coinside. If sense=–1, then trim2<trim1, and direction of the trimmed curve is opposite 

198



to that of the base curve.
In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = basisCurve(trim1+sense.t) vector function.

A trimmed curve is shown in Figure O.4.10.1.

Fig. O.4.10.1.

t curve parameter takes values in 0≤t≤sense(trim2–trim1) range.
Conceptually, a trimmed curve can be used to change the direction of the curve, but it is recommended to 

use Inverse() method.
A trimmed curve permits you to change location of the initial point of periodic curve. In this case, the 

base curve should be periodic and trim2=trim1+period should hold. In this case, a trimmed curve will also be 
periodic.

A trimmed curve can't use other trimmed curve as a base curve; base curve of other trimmed curve should 
be used subject to corresponding recalculation of trimming parameters.

Each curve can construct  its  trimmed copy using  Trimmed( double t1, double t2,  int sense ) virtual 
method.

O.4.11. MbReparamCurve3D Reparametrized Curve

MbReparamCurve3D class is declared in cur_reparam_curve3d.h file.
A reparametrized curve is described by  MbCurve3D *  basisCurve base curve,  tmin initial parameter, 

tmin end parameter, and dt derivative of base curve parameter to reparametrized curve parameter.
Reparametrized curve almost completely coincides with the base curve, but it has other parameter range.
In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = basisCurve(v(t)) vector function,

where  ,  bmin,  bmax are  the  limiting  values  of  base  curve 

parameter range.
t curve parameter takes values in tmin≤t≤tmax range.
Reparametrized  curve  almost  completely  coincides  with  the  base  curve,  but  it  has  other  parameter 

definition range. A curve with modified parameter length is used to align parameter variation ranges of the  
two curves. For example, if you want a segment and an arc to have the same parameter range, then it is  
required to create a reparametrized curve with parameter range taken from the other curve.

A reparametrized curve can't use other reparametrized curve as a base curve; rather the base curve of  
other reparametrized curve should be used.

199



O.4.12. MbOffsetCurve3D Equidistant Curve
 

MbOffsetCurve3D class is declared in cur_offset_curve3d.h file.
Equidistant curve is described by  MbCurve3D*  basisCurve base curve and  MbVector3D offset offset 

vector. There are some other parameters of the curve that are not mandatory, they are used to speed up curve  
methods.

basisCurve base  curve is  MbSpine object  that  constructs  a  local  coordinate  system moving along a 
specified curve, the first coordinate axis of its coordinate system is tangential to the curve.  offset vector 
determines movement of the initial point of the base curve to the initial point of equidistant curve.  offset 
vector is orthogonal to the tangent vector of the base curve in the initial point. In a moving local coordinate  
system, movement of any point of the base curve to the corresponding point of the equidistant curve is equal  
to the offset vector and orthogonal to the tangent vector of the base curve in the current point.

Radius  vector  of  a  point  at  equidistant  curve  is  calculated  as  follows.  The  following  elements  are 
calculated for the specified parameter of base curve: the point on the guiding curve and local coordinate 
system with origin in this point and the first coordinate axis tangential to the curve in this point. Then, a  
matrix is calculated for rotating the local coordinate system when it is moved from the initial point of the 
base curve to the specified point. The rotation matrix is used to transform a copy of the offset vector; the  
calculated point of the base curve is moved using the calculated vector.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = basisCurve(t) + offset .A(t) vector function,

where A(t) is a rotation matrix for rotating the local coordinate system when it is moved from the initial point  
of the base curve to the specified point. Curve equidistant to a conical spiral is shown in Figure O.4.12.1.

Fig. O.4.12.1.

Equidistant curve parameter range coincides with that of the base curve.
An equidistant curve can't use other equidistant curve as a base curve; guiding curve of other equidistant 

curve should be used subject to corresponding recalculation of the offset vector.

O.4.13. MbCharacterCurve3D Character Curve

MbCharacterCurve3D class is declared in cur_character_curve3d.h file.
Character curve is described by xFunction,  yFunction,  zFunction coordinate functions, MbPlacement3D 

position local coordinate system,  transform transformation matrix,  tmin and  tmax limit values of curve 
parameter  range,  closed curve  periodicity  sign  and  coordinateType coordinate  system  type  (Cartesian, 
cylindrical, spherical), where coordinate functions are defined. There are some other parameters of the curve 
that are not mandatory, they are used to speed up curve methods.

xFunction(t),  yFunction(t),  zFunction(t) coordinate functions of character curve are scalar functions of t 

200



common parameter, they are defined as character expressions. Lexical analysis was made for each character 
expression  and a  tree  was  constructed  that  calculates  the  value  of  character  expression  for  a  specified  
parameter, as well as derivatives of the character expression to the parameter. t curve parameter takes values 
in tmin≤t≤tmax range.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = [xFunction(t)   yFunction(t)   zFunction(t)] vector function.

A character curve is shown in Figure O.4.13.1.

Fig. O.4.13.1.

The  curve  may  be  periodic.  Character  expressions  should  describe  continuous  finite  single-valued 
functions in curve definition range.

O.4.14. MbConeSpiral Conical Spiral

MbConeSpiral class is declared in cur_cone_spiral.h file.
A conical spiral is an inheritor of MbSpiral curve. The spiral is described by MbPlacement3D position 

local coordinate system,  radius,  tgAlpha cone angle tangent,  step_2pi spiral pitch divided by 2π,  tmin and 
tmax spiral limits. There are some other parameters of the curve that are not mandatory, they are used to 
speed up curve methods.

Spiral axis coincides with position.axisZ axis of the local coordinate system. tgAlpha parameter is equal 
to tangent of the angle between spiral axis and spiral cone generator. tmin and tmax parameters are angles, 
they  are  measured  from  position.axisX vector  towards  position.axisY vector.  The  angles  that  are  2π 
multiples correspond to curve point in XZ plane of the local coordinate system.  t curve parameter takes 
values in tmin≤t≤tmax range.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = position.origin +
(radius + t tgAlpha step_2pi) (cos(t) position.axisX + sin(t) position.axisY) +

((t step_2pi) position.axisZ) vector function.

A conical spiral is shown in Figure O.4.14.1.

201



Fig. O.4.14.1.

Curve radius should be greater than zero:  radius>0. The following inequalities should hold for limiting 
parameters: tmin<tmax. The curve can't be periodic.

position local coordinate system may be either right- or left-handed. tgAlpha=0 for a cylindrical spiral.

O.4.15. MbCurveSpiral Variable Radius Spiral

MbCurveSpiral class is declared in cur_curve_spiral.h file.
Variable radius spiral is an inheritor of MbSpiral curve. A spiral is described by MbPlacement3D position 

local coordinate system, curve 2D curve that defines radius variation law, step spiral pitch, tmin and tmax 
spiral limits. There are some other parameters of the curve that are not mandatory, they are used to speed up  
curve methods.

Spiral axis coincides with position.axisZ axis of the local coordinate system. curve 2D curve lies in XZ 
plane of the local coordinate system, this curve defines spiral radius variation law. position.axisZ is abscissa 
axis, and position.axisX is ordinate axis in curve two-dimensional space. The origin of curve 2D coordinate 
system coincides with the origin of position local coordinate system. Spiral radius is equal to the ordinate of 
points  in  curve two-dimensional  curve.  tmin and  tmax parameters  are  angles,  they are  measured  from 
position.axisX vector towards position.axisY vector. The angles that are 2π multiples correspond to curve 
point in XZ plane of the local coordinate system.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = position.origin +
radius(t) (cos(t) position.axisX + sin(t) position.axisY) +

((t .step / 2π) position.axisZ) vector function,

where radius(t) is local radius. radius(t) local radius is calculated as follows. We use defined t parameter to 
calculate t.step/2π abscissa of required 2D curve point. Then we define the point of intersection of curve and 
vertical straight line; this line intersects with abscissa axis in t.step/2π point. The ordinate of two-dimensional 
intersection point of curve and the vertical straight line is equal to the required spiral radius(t). Local radius 
is the distance between local abscissa axis and the point of intersection of the vertical straight line and curve 
in two-dimensional space in XZ plane in position local coordinate system. Variable radius spiral is shown in 
Figure O.4.15.1.

202



Fig. O.4.15.1.

curve should be located above the abscissa axis and it shouldn't cross abscissa axis of its two-dimensional 
coordinate system.  curve shouldn't have vertical tangent lines. The following inequalities should hold for 
limiting parameters: tmin<tmax. The curve can't be periodic.

position local coordinate system may be either right- or left-handed.

O.4.16. MbCrookedSpiral Spiral with Curved Planar Axis

MbCrookedSpiral class is declared in cur_crooked_spiral.h file.
Spiral  with  a  curvilinear  planar  axis  is  an  inheritor  of  MbSpiral  curve.  A spiral  is  described  by  

MbPlacement3D position local  coordinate  system,  MbCurve*  curve two-dimensional  curve that  defines 
spiral axis, radius spiral radius, step spiral pitch, and two spiral limits (tmin and tmax). There are some other 
parameters of the curve that are not mandatory, they are used to speed up curve methods.

curve two-dimensional curve lies in XZ plane of  position local coordinate system, it defines the spiral 
axis.  position.axisZ is abscissa axis, and  position.axisX is ordinate axis in  curve two-dimensional space. 
The origin of  curve 2D coordinate system coincides with the origin of  position local coordinate system. 
Spiral radius is constant. tmin and tmax parameters are angles, they are measured from position.axisX vector 
towards position.axisY vector. The angles that are 2π multiples correspond to curve point in XZ plane of the 
local coordinate system.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = position.origin +
((point.y + radius cos(t) normal.y) position.axisX) +

(radius sin(t) position.axisY) +
((point.x + radius cos(t) normal.x) position.axisZ) vector function,

where point is a point in 2D curve that is calculated using curve–>PointOn(t,point) method and normal is a 
normal to 2D curve that is calculated using curve–>Normal(t,normal) method. Variable radius spiral  is 
shown in Figure O.4.16.1.

203



Fig. O.4.16.1.

The minimum curvature radius  curve shouldn't  be  less than spiral  radius.  The following inequalities 
should hold for limiting parameters: tmin<tmax. The curve can't be periodic.

position local coordinate system may be either right- or left-handed.

O.4.17. MbBridgeCurve3D Joining Curve

MbBridgeCurve3D class is declared in cur_bridge3d.h file.
Joining curve is an inheritor of MbCurve3D curve. The curve is described by two curves (MbCurve3D* 

curve1 and MbCurve3D* curve2), param1 and param2 point parameters of these curves, sense1 and sense2 
direction coincidence signs for derivatives of the joining curve and the curves to be joined , and two joining 
curve limits (tmin and tmax). There are some other parameters of the curve that are not mandatory, they are 
used to speed up curve methods.

A joining curve is used to smoothly join two specified points of curve1 and curve2. curve1 and curve2 
curve points are defined by param1 and  param2 parameters.  sense1 and  sense2 parameters define joining 
curve direction in these points. A joining curve is a cubic Hermite spline constructed based on two extreme 
points and curve derivatives in these points. t curve parameter takes values in tmin≤t≤tmax range.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

vector function, where  is a relative parameter value,  point1 is a point of  curve1 that is 

calculated using curve1–>PointOn(param1,point1) method,  point2 is a point of curve2 that is calculated 
using  curve2–>PointOn(param2,point2)  method,  derive1 and  derive2 are joining  curve  derivatives  in 
extreme points.  derive1 and derive2 vectors are parallel to the derivatives of the curves being joined. The 
length of  derive1 and  derive2 vectors is equal to distance between two extreme points divided by tmax–
tmin. A joining curve is shown in Figure O.4.17.1.

204



Fig. O.4.17.1.

Curve shape depends on location of extreme points and directions of curves being joined in these points.  
The following inequalities should hold for limiting parameters: tmin<tmax. The curve can't be periodic.

O.4.18. MbContour3D Contour

MbContour3D class is declared in cur_contour3d.h file.
MbContour3D contour is described by RPArray<MbCurve3D>segments set of sequentially joined curves 

and closed curve periodicity sign.
A contour is a composite curve. Unlike other curves, a contour may have bends. We'll call segments the 

curves that form a contour. The following conditions keep for contour segments: the initial point of each  
successive segment coincides with the end point of the previous one. For a periodic contour, the initial point 
of  the  first  segment  coincides  with  the  end point  of  the  last  one.  In  general,  contour  derivatives  have 
discontinuities by length and direction in the points where the segments join.

The initial value of contour parameter is zero: tmin=0. Contour parametric length is equal to the sum of the 
lengths of  parametric components  of  its  segments:  ,  where  wimin and  wimax are 

minimum and  maximum values  of  the  ith  segment  parameter.  When  radius  vector  of  contour  point  is 
calculated,  we  first  use  parameter  value  to  determine  the  working  segments  and the  value  of  its  local  
parameter, and then we calculate radius vector of the working segment, which is used as contour radius  
vector.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = segments[k](wk), vector function,

where  segments[k](wk)  is contour working segment with index value  k,  wk is working segment parameter 

that is equal to: . 

The  kth  segment  is  defined  by  the  value  of  t contour  parameter  from  condition 

, where wimin and wimax are minimum and maximum values 

of the ith segment parameter. A contour is shown in Figure O.4.18.1.

205



Fig. O.4.18.1.

Other contours shouldn't be used as contour segments. If other contours should be used to construct a 
contour, then such initial contours should be considered as a set of curves rather than as a single curve.

MbContour3D contour is the most common curve type.

O.4.19. MbPlaneCurve Plane Curve

MbPlaneCurve class is declared in cur_plane_curve.h file.
MbPlaneCurve  plane  curve  is  described  by  MbPlacement3D position local  coordinate  system  and 

MbCurve* curve two-dimensional curve in XY plane of the local coordinate system.
A polar curve is a projection of the curve from 2D space of XY plane of local coordinate system into 3D 

space.
In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = position.origin + (point.x position.axisX) + (point.y position.axisY) vector function,

where point is a point of 2D curve that is calculated using curve–>PointOn(t,point) method. A plane curve 
that is part of a two-dimensional ellipse and a local coordinate system is shown in Figure O.4.19.1.

Fig. O.4.19.1.

206



Parameter range and plane curve periodicity coincide with those of two-dimensional curve.

O.4.20. MbSurfaceCurve Curve on Surface

MbSurfaceCurve class is declared in cur_surface_curve.h file.
MbSurfaceCurve curve on surface is described by MbSurface*  surface surface,  MbCurve* curve two-

dimensional  curve in  surface parameter  space,  and  closed curve periodicity sign.  There  are  some other 
parameters of the curve that are not mandatory, they are used to speed up curve methods.

Curve on surface is  a  projection of 2D curve in surface parameter  space into 3D space.  curve two-
dimensional curve can be located outside of surface parameter definition area. Parameter definition area of  
the curve on the surface coincides with that of curve two-dimensional curve.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = surface( point.x, point.y ) vector function,

where  point is  a point  of  2D curve  that  is  calculated using  curve–>PointOn(t,point)  method.  x and  y 
coordinates of 2D point are u and v parameters of surface(u,v) surface. A curve on surface is constructed by 
introducing  dependences  of  u and  v parameters  from some  common parameter  (t):  u=u(t),  v=v(t).  This 
interdependence  is  described  by  curve two-dimensional  curve.  A curve  on  surface  is  shown in  Figure 
O.4.20.1.

Fig. O.4.20.1.

Two-dimensional curve in surface parameter definition area is shown in Figure O.4.20.2.

Fig. O.4.20.2.

Derivative of a curve on surface is calculated as a complex function

207



,

where  derive is a derivative of two-dimensional curve that is calculated using  curve–>FirstDer(t,derive) 
method.  Derivative  of  a  curve  on surface  is  located  in  a  tangent  plane of  a  surface  constructed  in  the 
specified point.

A curve on surface may be periodic if curve two-dimensional curve is periodic or surface is periodic, and 
curve has  coincident  derivatives  in  the  ends,  and  the  extreme  points  of  the  curve  are  set  off  by  a  
corresponding period of periodic curve by surface first or second parameter.

surface of  a  curve  on  surface  can  be  any  surface,  except  for  a  surface  limited  by 
MbCurveBoundedSurface curves.  If  required,  MbCurveBoundedSurface base  surface  will  be  used  to 
construct a curve on surface limited by curves.

O.4.21. MbSilhouetteCurve Silhouette Curve

MbSilhouetteCurve class is declared in cur_silhouette_curve.h file.
MbSilhouetteCurve silhouette curve is an inheritor of  MbSurfaceCurve curve on surface. A silhouette 

curve  is  described  by  MbSurface*  surface surface,  MbCurve*  curve two-dimensional  curve  in  surface 
parameter space,  closed curve periodicity sign,  perspective perspective sign,  eye gaze vector, and  species 
curve type. There are some other parameters of the curve that are not mandatory, they are used to speed up 
curve methods.

Silhouette curve is a curve on surface; the curve divides the surface into parts that are visible or invisible 
from the observation point. If perspective=true, then the observation point is described by eye gaze vector. If 
perspective=false, then the observation point is at an infinite distance, and  eye gaze vector describes the 
direction from the observation point to the surface. Normal to surface at silhouette curve is orthogonal to a 
straight line that connects this point of surface and the observation point.

In particular case, when an exact silhouette curve of the surface can be constructed, species curve type is 
equal to cbt_Ordinary. For example, silhouette curve of a sphere is a circle. In particular case, exactCurve 
exact 3D curve is constructed; this curve accurately describes the silhouette of the surface and it is used to  
calculate radius vector of silhouette curve and its derivatives.

In general,  species curve type has  cbt_Specific value, and  curve two-dimensional curve is a spline that 
approximates surface silhouette. In general, a point in silhouette curve is calculated by iterative method that  
uses curve two-dimensional curve as an initial approximation.

Parameter definition area of silhouette curve surface coincides with that of curve two-dimensional curve.
In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = surface( u, v ) vector function,

where u and v are coordinates of two-dimensional point, its initial approximation is calculated using curve–
>PointOn(t,point), u=point.x, v=point.y method. Then u and v parameters are improved by iterative method 
that uses the following equation

vector  n(u,v) = 0,

where n(u,v) is a normal to the surface that is calculated using surface–>Normal(u,v,n) method, vector is 
gaze vector (vector=eye for an observation point that is at an infinite distance ). A silhouette curve of torus 
surface is shown in Figure O.4.21.1.

208



Fig. O.4.21.1.

The silhouette curve of torus surface from other observation point is shown in Figure O.4.21.2.

Fig. O.4.21.2.

When a silhouette curve is crossed, a scalar product of surface normal vector and gaze vector always  
changes its sign. Silhouette curve is always closed or it starts and ends at surface edges. A silhouette curve is  
used to construct projections of the curved surface silhouette on a plane.

O.4.22. MbContourOnSurface Contour on Surface

MbContourOnSurface class is declared in cur_contour_on_surface.h file.
MbContourOnSurface contour on surface is described by MbSurface* surface surface and MbContour* 

contour two-dimensional contour in surface parameter space. There are some other parameters of the curve 
that are not mandatory, they are used to speed up curve methods.

A contour on surface is a composite curve, so it can have bends in joining points of segments of 2D  
contour. A contour on surface is a projection of surface parameter contour 2D space into 3D space. contour 
2D contour can be located outside of surface parameter definition area. Contour parameter definition area on  
a surface coincides with that of 2D contour.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = surface( point.x, point.y ) vector function,

209



where point is a point of 2D contour that is calculated using contour–>PointOn(t,point) method.  x and y 
coordinates of 2D point are u and v parameters of surface(u,v) surface. A contour on surface is constructed 
by introducing interdependence of u and v parameters and some their common parameter (t): u=u(t), v=v(t). 
This interdependence describes  contour 2D contour. A derivative of contour on surface is calculated as a 
complex function

,

where derive is a derivative of 2D contour that is calculated using contour–>FirstDer(t,derive) method. A 
derivative of the contour on surface lies in tangent plane of a surface constructed in the specified point.  A 
contour on surface is shown in Figure O.4.22.1.

Fig. O.4.22.1.

A contour on surface may be periodic if  contour 2D contour is periodic or surface surface is periodic, 
and  contour end points are set off for a corresponding period of the periodic curve using  surface first or 
second parameter.

A periodic contour on surface is usually used to describe a boundary of this surface.
Contour  surface may be  any surface,  besides  the  surface  limited  by  MbCurveBoundedSurface curves. 
MbCurveBoundedSurface base surface may be used to construct a contour on a surface limited by curves.

O.4.23. MbContourOnPlane Contour on Plane
MbContourOnPlane class is declared in  cur_contour_on_plane.h file.
MbContourOnPlane contour on plane is an inheritor of MbContourOnSurface class. A contour on plane is 

described by MbSurface* surface surface and MbContour* contour 2D contour in surface parameter space. 
There are some other parameters of the curve that  are not  mandatory,  they are used to speed up curve  
methods.

A contour on plane is a composite curve, so it can have bends in joining points of 2D contour segments. A 
contour on plane is a projection of plane parameter 2D contour into 3D space. Two-dimensional contour can 
be  located  outside  of  plane  parameter  definition  area.  Parameter  definition  area  of  a  contour  on  plane 
coincides with that of 2D contour.

In PointOn( double & t, MbCartPoint3D & r ) method, r curve radius vector is described by
r(t) = position.origin + (point.x position.axisX) + (point.y position.axisY) vector function,

where position is a local coordinate system of surface plane, point is a point in 2D contour that is calculated 
using  contour–>PointOn(t,point) method. A contour on plane is shown in Figure O.4.23.1.

210



Fig. O.4.23.1.

A contour on plane may be periodic if 2D contour is periodic or  surface is periodic, and  contour end 
points are set off for a corresponding period of the periodic curve using the first  or the second  surface 
parameter.

A periodic contour on plane is usually used to describe the boundaries of this surface.
A contour on plane is similar to a contour on surface, but it provides higher computation speed.

O.4.24. MbSurfaceIntersectionCurve Surface Intersection Curve

MbSurfaceIntersectionCurve class is declared in cur_surface_intersection.h file.
MbSurfaceIntersectionCurve  surface  intersection  curve  is  described  by two  curves  (MbSurfaceCurve 

curveOne  and  MbSurfaceCurve curveTwo)  that  lie  on  intersecting  surfaces,  buildType construction 
parameter and tolerance accuracy. There are some other parameters of the curve that are not mandatory, they 
are used to speed up curve methods.

curveOne(t) and curveTwo(t) curves have the same t parameter ranges and they coincide in space within 
some accuracy.  buildType parameter of intersection curve describes curve type and stores data on curve 
radius  vector  calculation  method.  buildType  parameter  takes  the  following  values:  cbt_Specific, 
cbt_Ordinary, cbt_Boundary, cbt_Tolerant. In Fig. O.4.24.1, you can see two surfaces and their intersection  
curve.

211



Fig. O.4.24.1.

In Fig. O.4.24.2 and O.4.24.3, you can see curves on surfaces that are used to construct an intersection curve.

Fig. O.4.24.2.

212



Fig. O.4.24.3.

In general, intersection curve has cbt_Specific type, curveOne.curve and curveTwo.curve 2D curves are 
splines that approximate the intersection of curveOne.surface and curveTwo.surface surfaces. The splines 
on surfaces have aligned control points. curveOne and curveTwo splines on surfaces coincide and have the 
same parameters in control points. MbSurfaceIntersectionCurve curve also returns the exact value of point  
radius vector at the sections between control points of the splines. In general, a point on the intersection 
curve is  calculated by iterative method that  uses  curveOne.curve and  curveTwo.curve two-dimensional 
curves as an initial approximation.

In special cases, intersection curve has cbt_Ordinary, cbt_Boundary, cbt_Tolerant types, and a point of 
intersection curve is calculated as the arithmetic average of radii vectors of curveOne(t) and curveTwo(t) 
curves.

If buildType=cbt_Ordinary, then MbSurfaceIntersectionCurve curve exactly describes the intersection of 
the curves, and  curveOne(t) and  curveTwo(t) curve coincide in space. An example of such curve is an 
intersection curve of a plane and a cylindrical surface having its axis orthogonal to the plane, see Figure 
O.4.24.4.

213



Fig. O.4.24.4.

On  a plane,  curveOne.curve is  a  circle;  and on a cylindrical  surface,  curveTwo.curve is  a  segment 
having parametric length equal to the length of 2D parametric curve on the plane. In order to ensure equality  
of parametric lengths, a MbReparam reparametrized curve is constructed based on the segment.

If  buildType=cbt_Boundary,  then  MbSurfaceIntersectionCurve  curve  describes  surface  edge,  see 
Figure O.4.24.5.  The  following  equations  hold  for  such  curve:  curveOne.curve=curveTwo.curve and 
curveOne.surface=curveTwo.surface.

Fig. O.4.24.5.

If buildType=cbt_Tolerant, then MbSurfaceIntersectionCurve curve describes the intersection of surfaces 
approximately.  curveOne(t) and  curveTwo(t) coincide in space with  tolerance accuracy. Such curves are 
constructed in the cases when any other construction is impossible. For example, if it is required to cross two 
surfaces that touch each other not exactly, but rather with some "noise".

In PointOn( double & t, MbMatrix3D & r ) method, r curve radius vector is described by

r(t) = 0.5 ( curveOne.surface(u1,v1) + curveTwo.surface(u2,v2) ) vector function,

where  u1,  v1 are coordinates of 2D point,  its  initial  approximation is  calculated using  curveOne.curve–
>PointOn(t,point1),  u1=point1.x,  v1=point1.y  method,  u2,  v2 are coordinates  of  2D  point,  its  initial 
approximation is calculated using  curveTwo.curve–>PointOn(t,point2), u2=point2.x, v2=point2.y method. 
In general, (buildType=cbt_Specific), u1, v1, u2, v2 parameters are clarified by iterative method that uses the 
following equations:

214



curveOne.surface(u1,v1) = plane(x,y),
curveTwo.surface(u2,v2) = plane(x,y),

where plane is a plane perpendicular to the segment connecting two closest control points of the intersection 
curve. A general case of intersection curve and control points that were used to construct  curveOne and 
curveTwo curves are shown in Figure O.4.24.6.

Fig. O.4.24.6.

Parameter  range  of  intersection  curve  coincides  with  that  of  shared  parameter  of  curveOne and 
curveTwo curves. Surface intersection curve may be periodic.

Surface intersection curve contains data on  spaceCurve 3D curve that coincides with the intersection 
curve  within  tolerance accuracy.  spaceCurve curve  is  used  to  construct  flat  projections  of  edges. 
spaceCurve curve is an auxillary object; it is calculated only if it is required.

215



O.5. SURFACES

Surfaces  belong to the family of  MbSpaceItem three-dimensional  geometric  objects.  Surfaces  play a 
major role in construction of a geometric model. Surfaces are used to describe smooth sections of geometric  
form for simulated objects. Surfaces are constructed using analytical functions based on a set of points, as  
well  as based on curves and based on surfaces. We'll  use  bold Roman font to designate vectors, radius 
vectors of points, and matrices in three-dimensional space.

O.5.1. MbSurface Surface

MbSurface class is declared in surface.h file.
MbSurface is an inheritor of MbSpaceItem class, see Figure O.5.1.1.

Figure O.5.1.1.

The surface is an abstract class. The following surfaces that are inheritors of MbSurface class are realized in 
C3D geometric kernel:
MbPlane – a plane,
MbCylinderSurface – a cylindrical surface,
MbConeSurface – a conical surface,
MbSphereSurface – a spherical surface,
MbTorusSurface – a toroidal surface,
MbExtrusionSurface – an extrusion surface,
MbRevolutionSurface – a rotation surface,
MbExpansionSurface – a plane-parallel kinematic surface,
MbSpiralSurface – a spiral surface,
MbEvolutionSurface – a kinematic surface,
MbExactionSurface – a kinematic surface with adaptation,
MbSectorSurface – a sectorial surface,
MbRuledSurface – a ruled surface,
MbLoftedSurface – a surface based on a family of curves,
MbElevationSurface – a surface based on a family of curves and a guiding curve,
MbCornerSurface – a surface based on three curves,
MbCoverSurface – a surface based on four curves,
MbCoonsPatchSurface – a bicubic Coons surface,
MbMeshSurface – a surface based on a network of curves,
MbJoinSurface – a joint surface,
MbSplineSurface – NURBS surface (NonUniform Rational B-Spline surface),
MbOffsetSurface – an equidistant surface,
MbChamferSurface – a chamfer surface,
MbFilletSurface – a fillet surface,
MbChannelSurface – a fillet surface with variable radius,
MbCurveBoundedSurface – a surface with arbitrary borders.



MbSurface is a vector function

surface (u , v )=[ x (u, v ) y (u ,v ) z (u, v ) ]

of two scalar parameters (u and v) that take values in  connected two-dimensional area. The surface is a 
continuous projection  of   connected 2D area  in  3D space.   area  will  be  described in  2D Cartesian 
coordinate  system.  In  a  particular  case,   area  is  a  rectangle,  and  surface  parameters  take  values  in 
uminuumax,  vminvvmax ranges. In general  case,   area is  described by 2D curves.  x(u,v),  y(u,v),  z(u,v) 
coordinates of surface(u,v) surface are single-valued continuous functions of u and v parameters.

umin,  umax,  vmin,  vmax limits  of  parameter  definition  limits  are  returned by double  GetUMin(),  double 
GetUMax(), double GetVMin(), and double GetVMax() surface methods, respectively.

We'll  call  the  surface  periodic  by  the  first  parameter  if  there  is  such  pu>0  that 
surface(ukpu,v)=surface(u,v), where k is an integer. We'll call the surface periodic by the second parameter 
if there is such  pv>0 that  surface(u,vkpv)=surface(u,v), where  k is an integer. Definition area of periodic 
surface parameter ranges within one period for the corresponding parameter.
bool IsUClosed() method returns "true" for a surface periodic by the first parameter.
bool IsVClosed() method returns "true" for a surface periodic by the second parameter.
double GetUPeriod() method returns pu period for a surface periodic by the first parameter or for a surface 
that can be extended and made periodic. double GetVPeriod() method returns pv period for a surface that is 
periodic by the second parameter or for a surface that can be extended and made periodic. Definition area of  
periodic surface parameter is always limited by one period.

We'll use the following designations:

; ;

; ; ;

; ; ; 

for private derivatives of surface by its parameters.
The main surface method is

void PointOn( double & u, double & v, MbCartPoint3D & s ).
It returns s(u,v) radius vector of surface point for given parameters (u and v).    
void DeriveU( double & u, double & v, MbVector3D & su ),
void DeriveV( double & u, double & v, MbVector3D & sv ),
void DeriveUU( double & u, double & v, MbVector3D & suu ),
void DeriveUV( double & u, double & v, MbVector3D & suv ),
void DeriveVV( double & u, double & v, MbVector3D & svv ),
void DeriveUUU( double & u, double & v, MbVector3D & suuu ),
void DeriveUUV( double & u, double & v, MbVector3D & suuv ),
void DeriveUVV( double & u, double & v, MbVector3D & suvv ),
void DeriveVVV ( double & u, double & v, MbVector3D & svvv )
methods respectively return su, sv, suu, suv, svv, suuu, suuv, suvv, svvv derivatives of surface radius vector for given 
parameters (u and  v). These methods adjust surface parameters if they go beyond the definition area (the 
exception is MbPlane plane). If u parameter goes beyond [umin, umax] range then: a) the surfaces that are non-
periodic by the first parameter, move  u parameter to the nearest limit  umin or  umax; b) the surfaces that are 
periodic by the first parameter add or subtract the required number of periods. If  v parameter goes beyond 
[vmin, vmax] range then: a) the surfaces that are non-periodic by the second parameter move v parameter to the 
nearest limit vmin or vmax; b) the surfaces that are periodic by the first parameter add or subtract the required 
number of periods.

217



void _PointOn( double u, double v, MbCartPoint3D & s ) method
returns  s(u,v)  radius  vector  of  the  surface  point  for  specified  parameters  u and  v both  within  surface 
parameter  definition  area  and  outside  it.  Each  non-periodic  surface  is  extended  outside  the  parameter 
definition area using its own law. If there is no such law (in general case),  then non-periodic surface is  
extended outside the parameter definition area, it is extended tangentially to the corresponding extreme point  
of the surface.     
void _DeriveU( double u, double v, MbVector3D & su ),
void _DeriveV( double u, double v, MbVector3D & sv ),
void _DeriveUU( double u, double v, MbVector3D & suu ),
void _DeriveUV( double u, double v, MbVector3D & suv ),
void _DeriveVV( double u, double v, MbVector3D & svv ),
void _DeriveUUU( double u, double v, MbVector3D & suuu ),
void _DeriveUUV( double u, double v, MbVector3D & suuv ),
void _DeriveUVV( double u, double v, MbVector3D& suvv ),
void _DeriveVVV( double u, double v, MbVector3D & svvv )
methods respectively return su, sv, suu, suv, svv, suuu, suuv, suvv, svvv derivatives of surface radius vector by u and v 
parameters both within surface parameter definition area and outside it.

Surfaces reload the following methods of 3D geometrical object:
the methods involved in transformation of geometrical object:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check for coinciding objects, check whether it's possible to make objects  
coinciding and make them coinciding:
MbSpaceItem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceItem & item ),
bool IsSimilar( const MbSpaceItem & item ),
bool SetEqual( const MbSpaceItem& item ),
the methods that return type from enumeration of geometric objects:
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family(),
the methods that ensure access to object internal data and their editing:
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties ),
the method that fills up a polygonal copy of a geometrical object,
void CalculateWire( double sag, MbMesh & mesh ).

In  most  cases  a  surface  has  rectangular  parameter  definition  area.  We'll  separate 
MbCurveBoundedSurface from all surfaces as it is a universal surface.MbCurveBoundedSurface has curved 
edges and may have arbitrary cutouts inside.  MbCurveBoundedSurface is constructed based on arbitrary 
surface with rectangular parameter definition area.

O.5.2. MbPlane Plane

MbPlane class is declared in surf_plane.h file.
MbPlane plane belongs to MbElementarySurface group of elementary surfaces. A plane is described by 

XY plane  in  MbPlacement3D position local  coordinate  system.  The  first  parameter  is  measured  along 
position.axisX vector, the second parameter is measured along position.axisY. Surface parameter definition 
area describes umin, umax and vmin, vmax limits, see Figure O.5.2.1.

218



Figure O.5.2.1.

In PointOn( double u, double v, MbCartPoint3D & s ) method, radius vector of s plane is described by

s(u,v) = position.origin + u position.axisX + v position.axisY vector function.

A plane behaves like an infinite object, although it has extreme values of its parameters (umin, umax and 
vmin, vmax) in its data. Please note that unlike other surfaces, in radius vector and its derivatives calculation  
methods, the plane does not adjust u and v parameters if they go beyond the definition area defined by umin, 
umax and vmin, vmax values.

position local coordinate system may be either right- or left-handed. If local coordinate system is left-
handed then direction of surface normal is opposite to direction of position.axisZ vector.

O.5.3. MbCylinderSurface Cylindrical Surface

MbCylinderSurface class is declared in surf_cylinder_surface.h file.
MbCylinderSurface cylindrical surface belongs to MbElementarySurface group of elementary surfaces. A 

cylindrical surface is described by radius and height defined in MbPlacement3D position local coordinate 
system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY 
vector. The first surface parameter (u) takes values in umin≤u≤umax range. u=0 and u=2π values correspond 
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2π holds for a periodic 
surface; umax-umin<2π holds for a non-periodic surface.

The second surface parameter is measured in a straight line that goes along position.axisZ vector. Surface 
second parameter (v) takes values in  vmin≤v≤vmax range.  v=0 corresponds to the beginning of the local 
coordinate system, and v=1 corresponds to the pont located at distance height from XY plane of surface local 
coordinate system.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
radius (cos(u) position.axisX + sin(u) position.axisY) +

height v position.axisZ vector function.

A cylindrical surface is shown in Figure O.5.3.1.

219



Figure O.5.3.1.

Radius and height should be popsitive:  radius>0,  height>0. The following inequalities should hold for 
surface limiting parameters: umin<umax, vmin<vmax.

position local coordinate system may be either right- or left-handed. If the local coordinate system is 
right-handed,  then the normal is  directed towards surface convexity (from the surface axis).  If the local  
coordinate system is left-handed then the normal is directed towards surface concavity (to the surface axis).

O.5.4. MbConeSurface Conical Surface

MbConeSurface class is declared in surf_cone_surface.h file.
MbConeSurface  conical  surface  belongs  to  MbElementarySurface  group  of  elementary  surfaces.  A 

conical surface is described by  radius,  height and  angle cone angle defined in  MbPlacement3D position 
local coordinate system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY 
vector. The first surface parameter (u) takes values in umin≤u≤umax range. u=0 and u=2π values correspond 
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2π holds for a periodic 
surface; umax-umin<2π holds for a non-periodic surface.

The second surface parameter is measured in a straight line that goes along position.axisZ vector. Surface 
second parameter (v) takes values in  vmin≤v≤vmax range.  v=0 corresponds to the beginning of the local 
coordinate system, and v=1 corresponds to the pont located at distance height from XY plane of surface local 
coordinate system.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
(radius + height v tg(angle)) (cos(u) position.axisX + sin(u) position.axisY) +

height v position.axisZ vector function.

A conical surface is shown in Figure O.5.4.1.

220



Figure O.5.4.1.

Radius and height  should be positive,  and angle modulo should not  exceed  π/2:  radius>0,  height>0, 
-π/2<angle<π/2.  If  angle=0,  then the conical  surface is  equivalent  to  cylindrical  surface.  The following 
inequalities should hold for surface limiting parameters: umin<umax, vmin<vmax. The following value of the 
second parameter corresponds to surface pole: v=–radius / (height tg(angle)). vmax and vmin limits take the 
values at which the surface is located in one side from the pole.

position local coordinate system may be either right- or left-handed. If the local coordinate system is 
right-handed,  then the normal is  directed towards surface convexity (from the surface axis).  If the local  
coordinate system is left-handed, then the normal is directed towards surface concavity (to the surface axis).

O.5.5. MbSphereSurface Spherical Surface

MbSphereSurface class is declared in surf_sphere_surface.h file.
MbSphereSurface sphere belongs to MbElementarySurface group of elementary surfaces. A sphere is 

described by radius determined in MbPlacement3D position local coordinate system.
The first surface parameter is measured along the arc from position.axisX vector towards position.axisY 

vector. The first surface parameter (u) takes values in umin≤u≤umax range. u=0 and u=2π values correspond 
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2π holds for a periodic 
surface; umax-umin<2π holds for a non-periodic surface.

The second surface parameter  is  measured along the arc  from XY plane of  local  coordinate  system 
towards  position.axisZ vector.  Surface  second  parameter  (v)  takes  values  in  vmin≤v≤vmax range.  v=0 
corresponds to a point in XY plane of surface local coordinate system. A surface is non-periodic by the  
second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
radius (cos(u) position.axisX + sin(u) position.axisY) +

radius sin(v) position.axisZ vector function.

A sphere is shown in Figure O.5.5.1.

221



Figure O.5.5.1.

The radius of sphere should be greater than zero: radius>0. A sphere has poles for its parameter (vπ/2 and 
v=–π/2). The following inequalities should hold for surface limiting parameters:  umin<umax,  vmin<vmax, 
vmax<=π/2, vmin>=–π/2.

position local coordinate system may be either right- or left-handed. If local coordinate system is right-
handed,  then the normal is  directed from the sphere.  If  local  coordinate system is left-handed,  then the  
normal is directed inside the sphere.

O.5.6. MbTorusSurface Toroidal Surface

MbTorusSurface class is declared in surf_torus_surface.h file.
MbTorusSurface  toroidal  surface  belongs  to  MbElementarySurface  group  of  elementary  surfaces.  A 

toroidal  surface  is  described  by  majorRadius radius  of  centers  and  minorRadius tube  radius  in 
MbPlacement3D position local coordinate system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY 
vector. The first surface parameter (u) takes values in umin≤u≤umax range. u=0 and u=2π values correspond 
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2π holds for a periodic 
surface; umax-umin<2π holds for a non-periodic surface.

The second surface parameter  is  measured along the arc  from XY plane of  local  coordinate  system 
towards  position.axisZ vector. Surface second parameter (v) takes values in  vmin≤v≤vmax range.  v=0 and 
v=2π values  correspond  to  a  point  in  XY  plane  of  local  coordinate  system  in  the  surface.  If 
majorRadius>minorRadius, then a surface may be periodic by the second parameter.  vmax-vmin=2π holds 
for a periodic surface; vmax-vmin<2π holds for a non-periodic surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
(majorRadius + (minorRadius cos(v)) (cos(u) position.axisX + sin(u) position.axisY) +

minorRadius sin(v) position.axisZ vector function.

222



A toroidal surface is shown in Figure O.5.6.1.

Figure O.5.6.1.

Tube radius should be positive: minorRadius>0. Radius of centers should not be smaller than radius of the 
tube taken with minus sign:  majorRadius>–minorRadius. If  majorRadius<minorRadius then surface has a 
pole  for  v=arccos(majorRadius/minorRadius)parameter   and  for  v=2π–arccos(majorRadius/minorRadius) 
parameter. The following inequalities should hold for surface limiting parameters: umin<umax, vmin<vmax.

position local coordinate system may be either right- or left-handed. If local coordinate system is right-
handed, then the normal is directed from the surface tube. If local coordinate system is left-handed, then  
normal is directed inside the surface tube.

O.5.7. MbExtrusionSurface Extrusion Surface

MbExtrusionSurface class is declared in surf_extrusion_surface.h file.
MbExtrusionSurface extrusion surface belongs to MbSweptSurface group of swept surfaces. Extrusion 

surface is a special case of sliding surfaces with rectilinear guide curve. Extrusion surface is described by 
MbCurve3D*  curve curve  generator,  MbVector3D direction vector  specifying  extrusion  direction  and 
distance extrusion length.

The first  surface parameter (u) coincides with curve generator parameter.  The first  surface parameter 
takes values in  umin≤u≤umax range that  corresponds to curve generator range.  If  the curve generator is 
periodic, then the surface is periodic by the first parameter.

Surface second parameter (v) takes values in vmin≤v≤vmax range. v=0 value corresponds to a point on the 
curve generator; v=1 corresponds to a point on the curve generator displaced by direction*distance vector. 
The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve(u) + (direction distance v) vector function.

Extrusion surface is shown in Figure O.5.7.1.

223



Figure O.5.7.1.

The following inequality should hold for the limits of the second parameter: vmin<vmax.

O.5.8. MbRevolutionSurface Revolution Surface

MbRevolutionSurface class is declared in surf_revolution_surface.h file.
MbRevolutionSurface  revolution  surface  belongs  to  MbSweptSurface  group  of  swept  surfaces. 

Revolution surface is a special case of swept surface, its guiding curve is a circle or its arc. Revolution  
surface is  described by  MbCurve3D*  curve curve generator,  MbPlacement3D position local  coordinate 
system,  its  position.axizZ vector  is  revolution  axis,  planeData sign  indicating  that  the  curve  and  the 
revolution axis are located in one plane, poleMin sign indicating the presence of a surface pole at the initial 
value of the first parameter,  poleMax sign indicating the presence of a surface pole at the end value of the  
first  parameter,  uPoleMin and  uPoleMax values  of  surface  first  parameter  in  surface  poles  (if  the 
corresponding pole exists). There are some other surface parameters that are not mandatory, they are used to 
speed up surface methods.

The first  surface parameter (u) coincides with curve generator parameter.  The first  surface parameter 
takes values in  umin≤u≤umax range that  corresponds to curve generator range.  If  the curve generator is 
periodic, then the surface is periodic by the first parameter.

Surface second parameter (v) takes values in vmin≤v≤vmax range. v=0 and v=2π values correspond to a 
point in curve generator. The surface may be periodic by the second parameter.  vmax-vmin=2π holds for a 
periodic surface; vmax-vmin<2π holds for a non-periodic surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin + (curve(u) – position.origin) M(v) vector function,

where M(v) is rotation matrix. Please note that multiplication of (curve(u)–position.origin) vector by M(v) 
matrix is a post-multiplication. Rotation matrix looks as follows

AAM 














 
 

100

0cossin

0sincos

)( 1 vv

vv

v =































 





















xisZposition.a

xisYposition.a

xisXposition.a

xisZposition.a

xisYposition.a

xisXposition.a

100

0cossin

0sincos
1

vv

vv

.

224



A is a matrix used to transform coordinates of radius vector from position local coordinate system to the 
global coordinate system. Rows of  A matrix consist of base vectors of the local coordinate system.  M(v) 
matrix transforms  curve(u) position.origin vector into the local coordinate system, rotates it  by  v angle 
around the rotation axis, and returns the rotated vector back into the global coordinate system.  Revolution 
surface is shown in Figure O.5.8.1.

Figure O.5.8.1.

If initial or end edge of curve generator crosses the rotation axis then the surface has a pole for umin or 
umax parameter respectively. The following inequality should hold for the limits of the second parameter: 
vmin<vmax.

Points of the curve generator are rotated along an arc around position.axizZ vector from position.axisX 
vector towards position.axisY vector. position local coordinate system may be either right- or left-handed.

O.5.9. MbExpansionSurface Motion Surface

MbExpansionSurface class is declared in surf_expansion_surface.h file.
MbExpansionSurface  motion  surface  belongs  to  MbSweptSurface  group  of  swept  surfaces.  Motion 

surface is a special case of swept surface with a curvilinear guiding curve. A motion surface is described by 
MbCurve3D* curve curve generator,  MbCurve3D* spine guiding curve, and MbCartPoint3D origin point 
that is the initial point of the guiding curve. The surface is constructed by moving the curve generator along 
the guiding curve. In a particular case, curve generator of motion surface may change its shape. In the latter  
case, the curve has the following components: brink second curve generator is available, ending is the end 
point of the guiding curve,  tmin is the initial parameter of  brink curve, and  dt is the derivative of  brink 
curve parameter by curve curve generator parameter. dt derivate is described by the following equation:

uminumax

tmintmax
dt




 ,

where tmax is the ending parameter of brink curve. In general case, a pointer to the second curve generator 
(brink) may be zero, that means that second curve generator is missing.

The  first  surface  parameter  (u)  coincides  with  curve curve  generator  parameter.  The  first  surface 
parameter  takes  values  in  umin≤u≤umax range  that  corresponds  to  curve  generator  range.  If  the  curve 
generator is periodic, then the surface is periodic by the first parameter.

225



The  first  surface  parameter  (v)  coincides  with  guiding  curve  parameter  and  it  takes  values  in 
vmin≤v≤vmax range. The surface may be periodic by the second parameter if the guiding curve is periodic 
and the second curve generator is missing.

In general case in PointOn( double u, double v,  MbCartPoint3D & s ) method, s plane radius vector is 
described by

s(u,v) = spine(v) + curve(u) – origin vector function.

The general case for sliding surface is shown in Figure O.5.9.1.

Figure O.5.9.1.

In a special case for PointOn( double u, double v, MbCartPoint3D & s ) method, s plane radius vector is 
described by

s(u,v) = spine(v) + (curve(u) – origin) (1–w) + (brink(t) – ending) w vector function,

where 
vminvmax

vminv
w




 , t=tmin+(u–umin)dt. A special case of sliding surface is shown in Figure O.5.9.2.

Figure O.5.9.2.

226



To ensure that there are no surface self-intersections, curve generating and guiding curve should not have 
sections parallel to each other. In certain cases, a sliding surface may have special points.

O.5.10. MbSpiralSurface Spiral Surface

MbSpiralSurface class is declared in surf_spiral_surface.h file.
MbSpiralSurface spiral surface belongs to MbSweptSurface group of swept surfaces. A spiral surface is a 

special  case  of  swept  surface  with  a  guiding  curve  having  cylindrical  spiral  form.  A spiral  surface  is  
described  by  MbCurve3D*  curve curve  generator,  MbPlacement3D position local  coordinate  system, 
position.axizZ vector that is spiral axis,  radius spiral radius,  step spiral pitch,  origin spiral initial  point 
position, as well as vmin and vmax spiral limiting parameters. There are some other surface parameters that 
are not mandatory, they are used to speed up surface methods.

Spiral axis coincides with position.axisZ axis in the local coordinate system. The first surface parameter 
(u)  coincides with curve generator parameter.  The first  surface parameter takes values in  umin≤u≤umax 
range  that  corresponds  to  curve  generator  range.  If  the  curve  generator is  periodic,  then  the  surface  is 
periodic by the first parameter.

Surface second parameter (v) takes values in vmin≤v≤vmax range. v=0 corresponds to a point in the curve 
generator.  v= 2π values  of  the  second parameter   correspond to  the  point  in  the  curve  generator  with 
position.axisZ translational vector multiplied by step. The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
radius (cos(t) position.axisX + sin(t) position.axisY) + ((t step/2π) position.axisZ) +

(curve(u) – origin) M(v) vector function,

where M(v) is rotation matrix. Please note that multiplication of (curve(u)–origin) vector by M(v) matrix is 
a post-multiplication. Rotation matrix looks as follows

AAM 














 
 

100

0cossin

0sincos

)( 1 vv

vv

v =































 





















xisZposition.a

xisYposition.a

xisXposition.a

xisZposition.a

xisYposition.a

xisXposition.a

100

0cossin

0sincos
1

vv

vv

.

A is a matrix used to transform coordinates of radius vector from position local coordinate system to the 
global coordinate system. Rows of A matrix are the base vectors of the local coordinate system. M(v) matrix 
moves curve(u)–origin vector into the local coordinate system, rotates it by v angle around the rotation axis 
in it, and transforms the rotated vector back into the global coordinate system. A spiral surface is shown in 
Figure O.5.10.1.

227



Figure O.5.10.1.

The following inequality should hold for the limits of the second parameter: vmin<vmax.

O.5.11. MbEvolutionSurface Swept Surface

MbEvolutionSurface class is declared in surf_evolution_surface.h file.
MbEvolutionSurface swept surface belongs to MbSweptSurface group of swept surfaces. A swept surface 

is  the  general  case  of  sliding surface with an arbitrary guiding curve.  A swept  surface is  described by  
MbCurve3D*  curve curve  generator,  MbCurve3D*  spine guiding  object,  and  MbCartPoint3D origin 
location of guiding curve original point. There are some other surface parameters that are not mandatory,  
they are used to speed up surface methods.

The first surface parameter (u) coincides with curve parameter of the curve generator. The first surface 
parameter  takes  values  in  umin≤u≤umax range  that  corresponds  to  curve  generator  range.  If  the  curve 
generator is periodic, then the surface is periodic by the first parameter.

spine guiding object replaces the guiding curve; it was constructed based on the curve and differs from 
the  latter  in  that  it  can  generate  a  local  coordinate  system associated  with  the  curve.  Surface  second  
parameter (v) coincides with the parameter of the curve of spine guiding object. Surface second parameter 
takes  values  in  vmin≤v≤vmax range  that  corresponds  to  guiding  curve  parameter  range.  If  the  guiding 
curve is periodic, then the surface is periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = spine(v) + (curve(u) – origin) M(v) vector function,

where  M(v) is  a matrix associated with the guiding curve.  Please note that  multiplication of  (curve(u)–
origin) vector by M(v) matrix is a post-multiplication. M(v) matrix looks as follows

M(v) = A-1(vmin) . A(v),

228



where A(v) is the matrix used to transform coordinates of point radius vector in movable coordinate system 
associated with the guiding curve into the global coordinate system. A(v) matrix depends on second surface 
parameter. Rows of A(v)  matrix are formed by base vectors of the movable coordinate system.

,

where i1(v) is a tangent vector of the guiding curve; i2(v) is a vector orthogonal to i1(v) and associated with 
direction vector of spine guiding object; i3(v) is a vector orthogonal to i1(v) and i2(v). Revolution surface is 
shown in Figure O.5.11.1.

Figure O.5.11.1.

i1(v) tangent vector is calculated based on the guiding curve. i2(v) vector is calculated from the condition 
of smooth transition from a point to a point of the guiding curve, and orthogonality condition for i1(v). i3(v) 
vector is calculated as the vector product of i1(v) vector and i2(v) vector.

O.5.12. MbExactionSurface Swept Surface with Adaptation

MbExactionSurface class is declared in surf_exaction_surface.h file.
MbExactionSurface swept surface with adaptation is an inheritor of MbEvolutionSurface swept surface. 

A swept surface with adaptation is used to construct solids with the help of kinematic operations with kinked  
composite guiding curves, see Figure O.5.12.1.

229



Figure O.5.12.1.

MbExactionSurface swept surface adjusts its ends in order to join it to other surface.

O.5.13. MbSectorSurface Sectorial Surface

MbSectorSurface class is declared in surf_sector_surface.h file.
MbSectorSurface  sectorial  surface  belongs  to  MbSweptSurface  group  of  swept  surfaces.  A sectorial  

surface is described by MbCurve3D* curve curve and MbCartPoint3D origin point.
The first surface parameter (u) coincides with curve curve parameter. The second surface parameter takes 

values belonging to umin≤u≤umax range that corresponds to curve range. If curve is periodic then surface is 
periodic by the first parameter.

Surface second parameter (v) takes values in vmin≤v≤vmax range. v=vmin value corresponds to a point in 
curve; v=vmax corresponds to origin point. The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve(u) (1–w) + origin w vector function,

where . A sectorial surface is shown in Figure O.5.13.1.

230



Figure O.5.13.1.

Curves of  s(const,v) surface are line segments.  The surface has a pole in  origin point  at  v=vmax.  A 
sectorial surface is a special case of ruled surface.

O.5.14. MbRuledSurface Ruled Surface

MbRuledSurface class is declared in surf_ruled_surface.h file.
MbRuledSurface ruled surface belongs to MbSweptSurface group of swept surfaces. A ruled surface is 

described by MbCurve3D* curve curve,  MbCurve3D* sline curve,  poleMin sign indicating availability of 
surface pole at the initial value of the first parameter, poleMax sign indicating availability of surface pole at 
the  end value  of  the  first  parameter,  tmin initial  parameter  of  sline curve,  dt derivative  of  sline curve 
parameter by curve curve parameter and type surface form. There are some other surface parameters that are 
not mandatory, they are used to speed up surface methods.

The first surface parameter (u) coincides with curve curve parameter. The second surface parameter takes 
values belonging to umin≤u≤umax range that corresponds to  curve range.  dt derivate is described by the 
following equation:

uminumax

tmintmax
dt




 ,

where  tmax is the terminal parameter of  sline curve. If  curve curve and sline curve are periodic, then the 
surface is periodic by the first parameter.

Surface second parameter (v) takes values in vmin≤v≤vmax range. v=vmin corresponds to a point in curve 
curve; v=vmax corresponds to a point in sline curve. The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve(u) (1–w) + sline(t) w vector function,

where , t=tmin+(u–umin)dt. A ruled surface is shown in Figure O.5.14.1.

231



Figure O.5.14.1.

Curves at  s(const,v) surface with  u=const parameters are straight line segments. A surface may have a 
pole if  curve curve or sline curve is reduced to a point, or if  curve curve and sline curve coincide at one 
edge.

O.5.15. MbLoftedSurface Surface Based on a Family of Curves

MbLoftedSurface class is declared in  surf_lofted_surface.h file.
MbLoftedSurface surface is described by RPArray<MbCurve3D>uCurves set of curves, vParams set of 

values of second surface parameter for curves, vLabels set of signs for identical curves, umin,  umax,  vmin, 
and vmax parameter limits, uClosedand vClosed surface closure signs by the first and the second parameters, 
directional vector for non-periodic curve at  vmin MbVector3D derive1, directional vector for non-periodic 
curve  at  vmax MbVector3D derive2,  poleUMin,  poleUMax,  poleVMin and  poleVMax signs  indicating 
availability of surface poles at the border of the definition area. There are some other surface parameters that  
are not mandatory, they are used to speed up surface methods.

The first surface parameter (u) coincides with the parameters of curves. All curves should have the same 
parameter range. MbReperamCurve3D curves may be used for this  purpose.  The first  surface parameter 
takes values in umin≤u≤umax range that corresponds to curves parameter range. If all curves in curves set 
are periodic then the surface may be periodic by the first parameter.

Surface second parameter (v) takes values in vmin≤v≤vmax range. v=vmin value corresponds to the initial 
value of  vParams[0] set;  v=vmax corresponds to the terminal value of  vParams[vParams.MaxIndex()] set. 
The surface may be periodic by the second parameter.

If all curves of curves set are different, then the values of vLabels set are equal to the index of curves in 
curves set. If there are the same adjacent curves in curves set that are displaced with respect to each other, 
then respective values of vLabels are equal to the minimum index of the cloned curve in curves set.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = (1–3w2+2w3) curves[i](u) + (3w2+2w3) curves[i+1](u) +
(w–2w2+w3) derive[i](u) + (–w2+w3) derive[i+1](u) (vParams[i+1]– vParams[i]) vector function,

where  ,  derive[i]  and  derive[i+1]  are  derivatives  of  curves[i]  and 

curves[i+1], respectively.  i index of working segment used to calculate radius vector of the point and its 
derivatives  are  calculated  from  vParams[i]vvParams[i+1].  If  there  are  equal  values  among  adjacent 
elements of vLabels set then the surface between corresponding curves is equal to the extrusion surface. A 
surface based on a family of curves is shown in Figure O.5.15.1.

232



Figure O.5.15.1.

Surface form depends on location of the curves and vParams set of parameter values at which the surface 
goes by curves. In order to prevent self-intersections of the surface, the values of vParams set should vary in 
proportion to the average distance between the curves.

s(const,v) surface curves with u=const parameters are MbHermit3D Hermite curves. A surface may have 
poles, if the first and/or the last  curves curve is reduced to a point, or if all  curves curves coincide at one 
edge.

O.5.16.  MbElevationSurface  Surface  Based  on  a  Family  of  Curves  and  a 
Guiding Curve

MbElevationSurface class is declared in surf_elevation_surface.h file.
A surface based on a family of curves and a guiding curve is an inheritor of  MbLoftedSurface class. 

Similar to MbLoftedSurface surface, MbElevationSurface surface is described by a set of generating curves 
(RPArray<MbCurve3D>uCurves),  vParams set  of  values of second surface parameter for curves,  umin, 
umax,  vmin,  vmax parameter  limits,  uClosed and  vClosed surface  closure  signs  for  first  and  second 
parameters, and poleUMin, poleUMax, poleVMin, poleVMax signs indicating presence of surface poles at the 
border of the definition area. In addition to parameters listed above, MbElevationSurface surface is also  
described  by  MbCurve3D*  spine guiding  curve.  There  are  some  other  surface  parameters  that  are  not 
mandatory, they are used to speed up surface methods.

The first surface parameter (u) coincides with the parameters of curves. All curves should have the same 
parameter range. MbReperamCurve3D curves may be used for this  purpose.  The first  surface parameter 
takes values in umin≤u≤umax range that corresponds to curves parameter range. If all curves in curves set 
are periodic, then the surface may be periodic by the first parameter.

The second parameter of v surface coincides with the parameter of spine guiding curve. Surface second 

233



parameter takes values in  vmin≤v≤vmax range that corresponds to guiding curve parameter range. If the 
guiding curve is periodic, then the surface is periodic by the second parameter.

In  PointOn( double  u,  double  v,  MbCartPoint3D &  s )  method,  s surface radius vector is calculated 
similarly to MbLoftedSurface surface radius vector subject to adjustment of guiding curve offset. A surface 
based on a family of curves and a guiding curve is shown in Figure O.5.16.1.

Figure O.5.16.1.

Surface form depends on location of generating curves, a guiding curve and vParams set of parameter 
values at which the surface crosses the curves. The values of vParams set are calculated by projecting mass 
centers of generating curves on the guiding curve.

O.5.17. MbCornerSurface Surface Based on Three Curves

MbCornerSurface class is declared in surf_corner_surface.h file.
MbCornerSurface surface based on three curves is described by MbCurve3D* curve0,  curve1,  curve2 

curves, three MbCartPoint3D vertex[3] points and three pairs of limits for parameters of the corresponding 
curves:  t0min,  t0max,  t1min,  t1max,  t2min,  t2max.  There are some other surface parameters that are not 
mandatory, they are used to speed up surface methods.

Surface  first  parameter  (u)  takes  values  in  0≤u≤1  range.  The  surface  can't  be  periodic  by the  first 
parameter. The surface has a special point at the minimum value of the first parameter u=0. A derivative of 
the radius vector by the second parameter in the special point is zero.

Surface second parameter (v) takes values in 0≤v≤1 range. The surface can't be periodic by the second 
parameter.

curve0,  curve1,  curve2 curves should have intersection points or crossing points.  t0min,  t0max,  t1min, 
t1max,  t2min,  t2max curve parameters are calculated using the intersection points or crossing points of the  
curves; these parameters define  vertex[3] points and working segments of the curves.  The directions of 
curves are of no importance for the surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v)  =  w0 (curve2(t2) + curve1(s1) – vertex[0]) +
+ w1 (curve0(t0) + curve2(s2) – vertex[1]) +

+ w2 (curve1(t1) + curve0(s0) – vertex[2]) vector function,  

where  w0=1–u,  w1=0.5(u–uv),  w2=0.5(u+uv) are barycentric coordinates of the surface,  t0=w2.t0min+(1–
w2).t0max,  s0=(1–w1).t0min+w1.t0max are parameters of curve0 curve, t1=w0.t1min+(1–w0).t1max,  s1=(1–
w2).t1min+w2.t1max are  parameters  of  curve1  curve,  t2=w1.t2min+(1–w1).t2max,  s2=(1–
w0).t2min+w0.t2max are parameters of curve2 curve. A surface based on three crossing curves is shown in 
Figure O.5.17.1.

234



Figure O.5.17.1.

In Figure O.5.17.2, you can see a surface constructed on three identical circular arcs, the surface coincides 
with a part  of  sphere  surface:  planes  of circular  arcs are orthogonal  to each other,  arcs  intersect  in the 
endpoints, any arc makes a quarter of a circle.

Figure O.5.17.2.

Surface form depends on the shape of the curves. If curves do not intersect, then surface does not contain  
them. If curves intersect then  vertex[3] points are located in intersection points, and the surface contains 
segments of the curves: if  w0=0 then the surface contains a segment of  curve0 curve; if  w1=0 then the 
surface contains a segment of curve1 curve; if w2=0, then the surface contains a segment of curve2 curve.

O.5.18. MbCoverSurface Coons Surface

MbCoverSurface class is declared in surf_cover_surface.h file.

235



MbCoverSurface Coons surface is described by MbCurve3D* curve0,  curve1,  curve2,  curve3 curves, 
four MbCartPoint3D vertex[4] points, four pairs of parameter limits for corresponding curves (t0min, t0max, 
t1min,  t1max,  t2min,  t2max,  t3min,  t3max),  uclosed periodicity sign for  surface first  parameter,  vclosed 
periodicity sign for surface second parameter, poleUMin sign indicating the presence of surface pole for the 
initial value of the first parameter,  poleUMax sign indicating the presence of surface pole for the terminal 
value of the first parameter, poleVMin sign indicating the presence of surface pole for the initial value of the 
second parameter, poleVMax sign indicating the presence of surface pole for the terminal value of the second 
parameter. There are some other surface parameters that are not mandatory, they are used to speed up surface  
methods.

Surface first parameter (u) takes values in 0≤u≤1 range. If curve0 and curve2 curves are periodic, then 
the surface is periodic by the first parameter.

Surface second parameter (v) takes values in 0≤v≤1 range. If curve1 and curve3 curves are periodic, then 
the surface is periodic by the second parameter.

curve0,  curve1,  curve2,  curve3  adjacent curves  should  have  intersection  points  or  crossing  points. 
t0min,  t0max,  t1min,  t1max,  t2min,  t2max, t3min, t3max curve parameters are calculated using intersection 
points or crossing points of curves; these parameters define working segments of curves and vertex points 
[4]. The directions of curves are of no importance for the surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v)  =    (1–v) (curve0(t0) – (1–u) vertex[0]) +
   + u       (curve1(t1) – (1–v) vertex[1]) +
   + v       (curve2(t2) – u       vertex[2]) +

+ (1–u) (curve3(t3) – v       vertex[3]) vector function,

where  w0=1–u,  w1=0.5(u–uv),  w2=0.5(u+uv)  are  barycentric  coordinates  of  the  surface,  t0=(1–
u).t0min+u.t0max is the parameter of curve0 curve, t1=(1–v).t1min+v.t1max is the parameter of curve1 curve, 
t2=(1–u).t2min+u.t2max is the parameter of curve2 curve, t3=(1–v).t3min+v.t3max is the parameter of curve3 
curve. Coons surface based on four crossing curves is shown in Figure O.5.18.1.

Figure O.5.18.1.

Surface form depends on the shape of the curves. If adjacent curves intersect in vertex[4] points, then the 
surface contains the following curve segments: if u=0, then the surface contains a segment of curve3 curve, 
if v=0, then the surface contains a segment of curve0 curve, if u=1, then the surface contains a segment of 
curve1, if v=1, then surface contains a segment of curve2 curve.

236



O.5.19. MbCoonsPatchSurface Coons Surface

MbCoonsPatchSurface class is declared in surf_coons_surface.h file.
MbCoonsPatchSurface bicubic Coons surface is constructed similar to  MbCoverSurfaceCoons surface 

and it has additional conditions for radius vector at the edges. MbCoonsPatchSurface bicubic Coons surface  
is described by MbCurve3D* curve0, curve1, curve2, curve3 curves, curve0V derivative of surface radius 
vector along curve0 curve by surface second parameter, curve1U derivative of surface radius vector along 
curve1 curve by surface first parameter, curve2V derivative of surface radius vector along curve2 curve by 
surface second parameter,  curve3U derivative of surface radius vector along curve3 curve by surface first 
parameter, four vertex[4] corner points, four vertexU[4] derivatives of the surface by surface first parameter 
in the corners, four  vertexV[4] derivatives of the surface by surface second parameter in the corners, four 
vertexUV[4] mixed derivatives by surface first and second parameters in the corners, four pairs of parameter 
limits  for  the  corresponding curves  (t0min,  t0max,  t1min,  t1max,  t2min,  t2max,  t3min,  t3max),  uclosed 
periodicity sign for surface first parameter, vclosed periodicity sign for surface second parameter. There are 
some other surface parameters that are not mandatory, they are used to speed up surface methods.

Surface first parameter (u) takes values in 0≤u≤1 range. The surface can be periodic by the first parameter 
if curve0, curve2, curveV0, curveV2 curves are periodic, and curveU1 and curveU3 curves coincide.

Surface second parameter (v) takes values in 0≤v≤1 range. Surface can be periodic by the first parameter 
if  curve1,  curve3, curveU1 and curveU3 curves are periodic, and  curveV0 and  curve and  V2 curves 
coincide.

curve0,  curve1,  curve2,  curve3 adjacent  curves  should  have  intersection  or  crossing  points.  t0min, 
t0max,  t1min,  t1max,  t2min,  t2max, t3min, t3max curve parameters  are  calculated based on intersection 
points or  crossing points of the curves;  these parameters define working segments of curves:  vertex[4], 
vertexU[4], vertexV[4], vertexUV[4] points. Directions of the curves are of no importance for the surface.  
However, parametrization of the following pairs of curves should coincide:  curve0 and curveV0, curve2 
and curveV2, curve1 and curveU1, curve3 and curveU3.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s radius vector of the surface is described 
by a vector function that is discussed in Geometric Modeling book authored by N. N. Golovanov. Bicubic 
Coons surface is constructed based on calculated data, it is used to construct mates and patches with mate  
conditions at the edges. Bicubic Coons surface is shown in Figure O.5.19.1.

Figure O.5.19.1.

237



Surface form depends on the shape of curves and derivatives. If adjacent curves intersect in  vertex[4] 
points then the surface contains the following curve segments: if u=0 then the surface contains a segment of 
curve3 curve, if v=0 then the surface contains a segment of curve0 curve, if u=1 then the surface contains a 
segment of curve1, if v=1 then surface contains a segment of curve2 curve.

O.5.20. MbMeshSurface Surface Based on a Network of Curves

MbMeshSurface class is declared in surf_mesh_surface.h file.
MbMeshSurface surface based on a network of curves is described by RPArray<MbCurve3D>uCurves 

set  of  curves,  RPArray<MbCurve3D>vCurves set  of  curves,  uParams set  of  values  of  surface  first 
parameter,  vParams set  of  values  of  surface  second  parameter,  umin and  umax limits  of  surface  first 
parameter, vmin and vmax limits of surface second parameter, signs indicating the presence of surface poles 
in  poleUMin,  poleUMax limits of surface first parameter, signs indicating the presence of surface poles in  
poleVMin, poleVMax limits of surface second parameter, uclosed periodicity sign for surface first parameter, 
vclosed periodicity sign for surface second parameter, type0 surface mating type in the edge corresponding to 
second parameter vmin , type1 surface mating type in the edge corresponding to first parameter umin, type2 
surface mating type in the edge corresponding to second parameter  vmax,type3 surface mating type in the 
edge corresponding to first parameter umax. There are some other surface parameters that are not mandatory, 
they are used to speed up surface methods.

The number of elements in vCurves curve set and uParams set of values of surface first parameter are 
aligned so that  vCurves[j] curve points correspond to  uParams[j] parameter.  Surface first  parameter (u) 
takes values in  uParams[0]≤u≤uParams[uParams.MaxIndex()] range. If all  uCurves curves are periodicб 
then the surface is periodic by the first parameter.

The number of elements in uCurves curve set and vParams set of values of surface second parameter are 
aligned so that  uCurves[i] curve points match  vParams[i] parameter. Surface second parameter (v) takes 
values in vParams[0]≤v≤vParams[vParams.MaxIndex()] range. If all  vCurves curves are periodic then the 
surface is periodic by the second parameter.

Each  uCurves[i] curve should have intersection points or crossing points with each  vCurves[j] curve. 
Adjacent curves in  uCurves set should not have opposite directions. Adjacent curves in  vCurves set also 
should not have opposite directions.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by a 
vector function that is described in Geometric Modeling book, the author of the book is N.N. Golovanov. A 
surface based on a network of curves is shown in Figure O.5.20.1.

238



Figure O.5.20.1.

Surface form depends on the shape of curves,  their relative position and the values of parameters in 
uParams and vParams sets. If each uCurves[i] curve intersects with each vCurves[j] curve, then the surface 
contains  vCurves[j] curves if parameters  u=uParams[j], and it contains uCurves[i] curves if parameters 
v=vParams[i].

O.5.21. MbJoinSurface Joint Surface

MbJoinSurface class is declared in surf_joint_surface.h file.
MbJoinSurface joint surface is described by RPArray<MbCurve3D>curves set of curves,  knots nodal 

vector,  degree spline order,  umin and  umax limits of surface first  parameter,  closedU periodicity sign of 
surface  first  parameter,  closedV periodicity sign  of  the  surface  second  parameter,  a  sign  indicating  the 
presence of surface poles at isPoleUmin, isPoleUmax limits of surface first parameter, a sign indicating the 
presence of surface poles at isPoleUmin, isPoleUmax limits of surface second parameter.

curves curves are aligned with each other: they have the same direction and parameter range. Surface first 
parameter (u) coincides with curves parameter of curves that is a common parameter for them. Surface first 
parameter takes values in  umin≤u≤umax range that corresponds to  curves curves parameter range. If all 
curves curves are periodic, then the surface is periodic by the first parameter. Let knots nodal vector contain 
knotsCount elements, and let  curves set have  curvesCount curves. The following equation holds for the 
number of elements in these sets: curvesCount+degree=knotsCount.

Surface  second  parameter  (vtakes  values  in  vmin≤v≤vmax range,  where  vmin=knots[degree–1], 
vmax=knots[knotsCount–degree]. The surface can't be periodic by the second parameter.

In PointOn( double  u, double  v,  MbCartPoint3D & s ) method,  s surface radius vector is described by 
vector function

239



,

where  Nj
degree(v) are B-splains of  degree order for  jth  curves[j] curve.  A joint surface  is shown in Figure 

О.5.21.1.

Figure О.5.21.1.

Each s(const,v) curve with fixed first parameter (u=const) is a NURBS curve of degree order constructed 
based on curves[i](const) points.

O.5.22. MbSplineSurface NURBS Surface

MbSplineSurface class is declared in surf_spline_surface.h file.
MbSplineSurface  NURBS  (NonUniform  Rational  B-Spline  surface)  surface  is  described  by 

SArray<MbCartPoint3D>points[i][j],  i=0,1,...,vcount–1,  j=0,1,...,ucount-1  control  points  that  are 
conventionally located in the nodes of a rectangular table having ucount columns and vcount rows, weights 
of  control  pints  defined  in  weight[i][j]  table,  udegree order  of  B-splines  along  surface  first  parameter, 
vdegree degree of B-splines along surface second parameter,  uknots nodal vector along the first parameter, 
vknots nodal vector along the second parameter,  uclosed and vclosed surface periodicity signs for the first 
and for the second parameters. There are some other surface parameters that are not mandatory, they are used 
to speed up surface methods.

The order of B-splines along surface parameters coincides with the order of divided difference that was 
used to calculate corresponding B-splines. uknots and vknots nodal vectors are non-decreasing sequences of 
real numbers that define definition area of surface parameter and the form of the surface. Let uknots nodal 
vector contain uknotsCount elements, and the number of points in each row of rectangular table be equal to  
ucount. For a NURBS surface that is non-periodic by the first parameter, the following equation holds for the 
numbers of elements in the sets: ucount+degree=uknotsCount. For a periodic NURBS surface the following 
equation holds for the numbers of elements in the sets: knotsCount+2degree–1=knotsCount.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

240



,

where Ni
vdegree(v) and Nj

udegree(u) are B--splains. In Fig. О.5.22.1 you can see segments that connect adjacent 
points[i][j] control points.

Figure О.5.22.1.

Figure О.5.22.1 demonstrates control points that are conventionally located in the nodes of a rectangular 
table. NURBS surface that is constructed based on the same control points is shown in Figure О.5.22.2.

241



Figure О.5.22.2.

s(const,v) and s(u,const) curves on the surface with u=const or v=const parameters are B-curves having 
udegree order and  vdegree order respectively.  udegree is surface degree by the first parameter;  vdegree is 
surface  degree by the  second parameter.  Parameter  variation area  of  non-periodic  NURBS surface  is  a 
rectangle: uknots[udegree–1]uuknots[ucount], vknots[vdegree–1]vvknots[vcount].

A surface may be periodic both by the first parameter and by the second parameter.  uknots and  vknots 
nodal vectors for periodically closed surface have udegree–1 and vdegree–1 more elements, respectively. If 
NURBS surface is periodic by both parameters then parameter variation area is a rectangle: uknots[udegree–
1]uuknots[ucount+udegree–1], vknots[vdegree–1]vvknots[vcount+vdegree–1].

Every  surface  can  construct  its  NURBS  copy  using  NurbsSurface(  const  MbNurbsParameters  & 
uParam, const MbNurbsParameters & vParam ) virtual method.

O.5.23. MbOffsetSurface Equidistant Surface

MbOffsetSurface class is declared in surf_offset_surface.h file.
MbOffsetSurface equidistant  surface is described by  MbSurface*  basisSurface base surface,  distance 

offset along the normal to the base suface, u0min, u0max limits of base surface first parameter, v0min, v0max 
limits of base surface second parameter,  u0closed,  v0closed base surface periodicity signs,  dumin,  dumax 
increments of  the limits  of  base surface first  parameter,  dvmin,  dvmax increments of  the limits  of  base 
surface second parameter. There are some other surface parameters that are not mandatory, they are used to 
speed up surface methods.

Point radius vector of equidistant surface is calculated as follows. The point of the base surface and the 
normal in this point are calculated for a preset parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

r(u,v) = basisSurface(u,v) + normal(u,v) .distance vector funсtion,

where normal(u,v) is normal to the surface in the preset point. An equidistant surface and its base surface are 

242



shown in Figure O.5.23.1.

Figure O.5.23.1.

Parameter variation area of equidistant surface and parameter variation area of its base surface may differ.  
Parameter  variation  area  of  the  first  parameter  of  equidistant  surface  is  determined  by  the  following 
inequalities:  u0min+duminuu0max+dumax.  Parameter  variation  area  of  the  second  parameter  of 
equidistant  surface  is  determined  by  the  following  inequalities:  v0min+dvminvv0max+dvmax.  An 
equidistant surface with a negative offset and expanded parameter definition area and its base surface are  
shown in Figure O.5.23.2.

Figure O.5.23.2.

An equidistant  surface can't use other  equidistant surface as a base  surface; rather base  surface of the 
other equidistant surface should be used subject to corresponding recalculation of offset value.

Each surface can construct an equidistant surface using  Offset( double distance, bool  sense ) virtual 
method.

O.5.24. MbChamferSurface Chamfer Surface

MbChamferSurface class is declared in surf_chamfer_surface.h file.
MbChamferSurface chamfer surface belongs to  MbSmoothSurface group of mating surfaces. Chamfer 

243



surface  is  described  by  MbSurfaceCurve*  curve1  curve  on  the  first  mated  surface,  MbSurfaceCurve* 
curve2 curve on the second mated surface,  form chamfer construction method,  distance1 and  distance2 
chamfer sides, umin and umax parameter limits curve1 and curve2 curve parameters, vmin and vmax limits 
of  surface first  parameter,  uclosed periodicity sign of  surface first  parameter,  poleMin sign indicating a 
surface pole for the initial value of the first parameter,  poleMax sign indicating a surface pole for the end 
value of the first parameter.

curve1 and curve2 are aligned with each other, they have the same parameter range. u is the first surface 
parameter that coincides with parameter of  curve1 and curve2 curves that is common for them. The first 
surface  parameter  takes  values  in  umin≤u≤umax range that  corresponds  to  parameter  definition area of 
curve1 and curve2 curves. If curve1 and curve2 curves are periodic, then the surface is periodic by the first 
parameter.

Surface second parameter (v)  takes values in  vmin≤v≤vmax range.  v=vmin corresponds to  a point  in 
curve1 curve, v=vmax corresponds to a point at curve2 curve. The surface can't be periodic by the second 
parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve1(u) (1–w) + curve2(u) w vector function,

where . A chamfer surface is shown in Figure O.5.24.1.

Figure O.5.24.1.

Curves at  s(const,v) surface with  u=const parameters are straight line segments. A surface may have a 
pole at u=umin and u=umax if corresponding edges of curve1 and curve2 curves coincide.

O.5.25. MbFilletSurface Fillet Surface

MbFilletSurface class is declared in surf_fillet_surface.h file.
MbFilletSurface fillet surface belongs to MbSmoothSurface group of mating surfaces. MbFilletSurface  

fillet  surface is  described by  MbSurfaceCurve*  curve1 curve on first  mated  surface,  MbSurfaceCurve* 
curve2 curve on second mated surface, MbCurve3D* curve0 curve, MbFunction* weights0 weight function 
of curve0 curve, form filleting method, distance1 and distance2 filleting radii, conic shape coefficient, umin 
and umax limits of curve1, curve2, curve0 curve parameters and weights0 functions, vmin and vmax limits 
of surface second parameter,  uclosed periodicity sign of surface first parameter,  poleMin sign indicating a 
surface pole at the initial value of the first parameter, poleMax sign indicating a surface pole at the terminal 
value of the first parameter, even sign indicating uniform surface parameterization for the second parameter, 
equable sign indicating smooth mating of the surface with mated surfaces, byCurve1 sign indicating an edge 
along  curve2  orcurve1  curve  (equable=false).  There  are  some  other  surface  parameters  that  are  not 
mandatory, they are used to speed up surface methods.

244



curve1, curve2,  curve0 curves and  weights0 function are aligned with each other and have the same 
parameter range. u is the first surface parameter that coincides with curve1, curve2, curve0 curve parameter 
and weights0 function that is common for them. Surface first parameter takes values in umin≤u≤umax range 
that corresponds to parameter range of  curve1, curve2,  curve0 curves and  weights0 function. If  curve1, 
curve2, curve0 curves and weights0 function are periodic, then the surface is periodic by the first parameter.

Surface second parameter (v)  takes values in  vmin≤v≤vmax range.  v=vmin corresponds to  a point  in 
curve1 curve, v=vmax corresponds to a point at curve2 curve. The surface can't be periodic by the second 
parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

.

Each  s(const,v)  curve  with  fixed  surface  first  parameter  (u=const)  is  third-order  NURBS  curve 
constructed based on  curve1(u),  curve0(u),  curve2(u) points; the weights of the outermost points of this 
NURBS curve are  1,  the  weight  of  curve0(u)  midpoint  is  equal  to  weights0(u).  If  conic=_ARC_,  then 
weights0(u)  function  is  calculated  from  condition  that  all  s(const,v)  curves  are  circular  arcs.  If 
conic≠_ARC_, then weights0 function is a constant and it is equal to conic shape coefficient. A fillet surface 
is shown in Figure O.5.25.1.

Figure O.5.25.1.

In general case, this surface smoothly mates with the surfaces where curve1(u) and curve2(u) curves are 
located. In this case  equable parameter is "true". If  equable=false, then for  curve1 or  curve2 mating is 
smooth,  and  the  other  curve  is  face  edge.  If  byCurve1=true,  then  mating  of  curve1  curve  is  smooth, 
otherwise this is true for curve2. A fillet surface with kept edge is shown in Figure O.5.25.2.

245



Figure O.5.25.2.

If  distance1 and  distance2 filleting  radii  are  not  equal,  then  fillet  surface  in  s(const,v)  section  with 
u=const parameters circumscribes an ellipse. An elliptical fillet surface is shown in Figure O.5.25.3.

Figure O.5.25.3.

In general case, filleting method is  form=st_Fillet. If  form=st_Span, then  distance1=distance2 and they 
are equal to the distance between curve1 and curve2, and surface filleting radius is variable. A fillet surface 
with preserved distance between reference curves is shown in Figure O.5.25.4.

246



Figure O.5.25.4.

Curves of  s(const,v) surface with  u=const parameters are conic sections, their shape depends on  conic 
parameter. If  conic=_ARC_=0 then the curves of  s(const,v) surface are circular arcs. If  conic=0.5 then the 
curves of  s(const,v) surface are parabolic arcs. If 0.05<conic<0.5 then the curves of  s(const,v) surface are 
elliptical arcs. If 0.5<conic<0.95 then the curves of  s(const,v) surface are hyperbolic arcs. A surface may 
have a pole at  u=umin and at  u=umax if the corresponding edges of  curve0,  curve1 and  curve2 curves 
coincide.

O.5.26. MbChannelSurface Fillet Surface

MbChannelSurface class is declared in surf_channel_surface.h file.
MbChannelSurface fillet surface is an inheritor of MbFilletSurface fillet surface. MbChannelSurface fillet 

surface  is  described  by  MbSurfaceCurve*  curve1  curve  on  the  first  mated  surface,  MbSurfaceCurve* 
curve2 curve on the second mated surface,  MbCurve3D*  curve0 curve,  MbFunction*  weights0 weight 
function of  curve0 curve,  MbFunction* function radius change function,  form filleting method,  distance1 
and distance2 filleting radii, conic shape coefficient, umin and umax limits of curve1, curve2, curve0 curve 
parameters  and  weights0  and  function functions,  vmin and  vmax limits  for  surface  second  parameter, 
uclosed periodicity sign for surface first parameter, poleMin sign indicating a surface pole at the initial value 
of the first parameter, poleMax sign indicating a surface pole at the end value of the first parameter. There are 
some other parameters of the surface that are not mandatory, they are used to speed up the methods.

curve1, curve2,  curve0 curves and weights0,  function functions are aligned with each other and have 
the same parameter range.  u is the first surface parameter, it coincides with parameter of  curve1, curve2, 
curve0 curves andweights0 and  function functions that is common for them. The first surface parameter 
takes values in  umin≤u≤umax range that corresponds to the range of  curve1, curve2,  curve0 curves and 
weights0 and function functions. If curve1, curve2, curve0 curves and weights0 and function functions are 
periodic then the surface may be is periodic by the first parameter.

Surface second parameter (v)  takes values in  vmin≤v≤vmax range.  v=vmin corresponds to  a point  in 
curve1 curve, v=vmax corresponds to a point at curve2 curve. The surface can't be periodic by the second 
parameter.

In  PointOn  (double  u, double  v,  MbCartPoint3D & s) method,  s surface radius vector is described by 
vector function

247



22

22

)(0)1(2)1(

)(2)(0)(0)1(2)(1)1(
),(

vuweightvvv

uvuuweightvtuv
vu





curvecurvecurve

s

Each  s(const,v)  curve  with  fixed  surface  first  parameter  (u=const)  is  third-order  NURBS  curve 
constructed based on  curve1(u),  curve0(u),  curve2(u) points; the weights of the outermost points of this 
NURBS curve are 1, the weight of curve0(u) mid point is equal to weights0(u). If surface first parameter is 
modified,  then  filleting  radii  are  changed  as  follows:  R1(u)=distance1.function(u)  and 
R2(u)=distance2.function(u). If conic=_ARC_, then weights0(u) function is calculated from condition that 
all s(const,v) curves are circular arcs. If conic≠_ARC_, then weights0 function is a constant and it is equal to 
conic shape coefficient. A fillet surface with variable radius is shown in Figure O.5.26.1.

Figure O.5.26.1.

A fillet  surface with variable radius is smoothly mated with surfaces, where  curve1(u) and  curve2(u 
curves are found; in this case equable=true and form=st_Fillet.

Curves of  s(const,v) surface with  u=const parameters are conic sections, their shape depends on  conic 
parameter. If conic=_ARC_=0, then the curves of s(const,v) surface are circular arcs. If conic=0.5, then the 
curves of s(const,v) surface are parabolic arcs. If 0.05<conic<0.5, then the curves of s(const,v) surface are 
elliptical arcs. If 0.5<conic<0.95, then the curves of  s(const,v) surface are hyperbolic arcs. A surface may 
have a pole at  u=umin and at  u=umax if the corresponding edges of  curve0,  curve1 and  curve2 curves 
coincide.

O.5.27. MbCurveBoundedSurface Surface with Arbitrary Borders

MbCurveBoundedSurface class is declared in surf_curve_bounded_surface.h file.
MbCurveBoundedSurface surface with arbitrary borders is described by MbSurface* basisSurface base 

surface, RPArray<MbContourOnSurface>curves set of boundary curves (contours on the surface) as well as 
by umin, umax, vmin and vmax parameter limits that define a dimensional rectangle of parameter definition 
area.

MbCurveBoundedSurface  surface  has  curved  edges  and  can  have  arbitrary  cutouts  inside.  Surface 
boundaries describe contours on the surface of curves container.

In PointOn( double  u, double  v,  MbCartPoint3D & s ) method,  s surface radius vector is described by 
vector function

248



s(u,v) = basisSurface(u,v) vector function, u,v ,

where  is parameter definition area represented by a connected two-dimensional area. Radius vector of the 
surface  bounded by the  contours  is  described  according  to  the  same  law as  basisSurface surface;  but 
parameter definition area is different. A base surface and contours on it are shown in Figure O.5.27.1.

Figure O.5.27.1

In general case, parameter definition area of  surface that is bounded by surface contours can go beyond 
basisSurface parameter definition area. Outside of  basisSurface surface parameter definition area,  r(u,v) 
radius vector is calculated using _PointOn(u,v,s) method according to basisSurface surface extension rules. 
A surface with an arbitrary border is shown in Fig. O.5.27.2.

249



Figure O.5.27.2.

Each curve in curves container describes one closed surface border. Each curve in curves container is a 
contour on MbContourOnSurface surface. Each contour on the surface is described by surface that coincides 
with  basisSurface, and  contour 2D contour.  contour is  a closed 2D composite  curve.  contour contour 
segments may by any MbCurve 2D curves, except for MbContour composite curves. In general case, contour 
derivatives  have  discontinuities  by  length  and  direction  in  the  points  where  the  segments  join.  Two-
dimensional contours describe borders of  definition area of MbCurveBoundedSurface surface. Boundary 
contours of curves container meet the following conditions: they do not intersect themselves and each other, 
the first  curves[0] contour of the container describes the external border and it contains all other contours  
that describe internal cutouts in the surface. Internal contours can't be nested. For quick location of a 2D 
point relative to the surface parameter definition area, boundary contours are oriented so that if you move 
along the border, then the surface is always on the left  side if we look opposite to surface normal. So,  
external contour is oriented so that movement along the border is executed counter-clockwise when gaze  
direction is opposite to its normal, and inner contours are oriented in the opposite direction.

MbCurveBoundedSurface surface with arbitrary borders can't be used as  basisSurface base surface. If 
you need to construct a surface with arbitrary borders based on other surface with arbitrary borders, then you 
should use a base surface of the latter.

250



O.6. SPECIAL OBJECTS

Scalar functions that are similar to curves in one-dimensional space are special objects. Special objects  
are used for specific purposes, for example, in order to describe the change of fillet  surface radius as a  
function of one surface parameter. In two-dimensional space, multiline and area are special objects. Contour 
with breaks was created to work with multilines based on a two-dimensional contour. In three-dimensional  
space, special objects describe base points of other objects, threads, extension lines, unevenness and other  
symbols.

O.6.1. MbFunction Function

MbFunction class is declared in function.h file.
MbFunction is an abstract class, it is an inheritor of MbRefItem and TapeBase classes, see Figure O.6.1.1.

Fig. O.6.1.1.

In C3D geometric kernel, the following scalar functions are realized that are inheritors of MbFunction class:
MbConstFunction – constant function
MbLineFunction – linear function
MbCubicFunction – cubic Hermite function,
MbCubicSplineFunction – cubic spline function.
MbCharacterFunction is an analytic function.

 MbFunction is

function(t) = f(t) scalar function

of  t scalar parameter that takes values in [tmin,  tmax] range. Function parameter range is [tmin,  tmax] range in 
one-dimensional space. f(t) should be one-valued continuous function.

tmin and tmax limit values of parameter range are received using double GetTMin() and double GetTMax() 
function methods respectively.

The function is referred as periodic if there is p>0 such that f(tkp)=f(t), where k is an integer. IsClosed() 
method returns "true" for periodic function. double GetPeriod() method for periodic function or method of 
for function that can be extended and made periodic returns period 9p). Periodic function parameter range is 
always limited by one period.
Double Value( double & t ) is the main method of the function.
This method returns function value for specified parameter (t).
double FirstDer( double & t ),
double SecondDer( double & t ),
double ThirdDer( double & t ) methods
return respectively the first, second and third function derivatives for specified t parameter. These methods 
adjust function parameter if it goes beyond the range. If t parameter goes beyond [tmin, tmax] range, then non-
periodic  function moves  t parameter  to  the  nearest  tmin or  tmax limit,  and the periodic  function  adds or 
subtracts the required number of periods.
double _Value( double t )
method returns function value for specified t parameter both inside and outside the parameter range. In the 



general case, a non-periodic function is extended outside of the parameter range along the tangent in the end 
point. Analytic functions are exceptions. Periodic functions are extended cyclically outside of the parameter 
range.    
double _FirstDer( double t ),
double _SecondDer( double t ),
double _ThirdDer( double t )
methods return respectively the first, second and third derivatives of function for specified t parameter both 
inside and outside of the parameter range.

The functions reload the following methods:
the methods that permit to copy, check objects for coincidence, check whether it's possible to make objects 
coinciding and make them coinciding:
MbFunction & Duplicate(),
bool IsSame( const MbFunction & item ),
bool IsSimilar( const MbFunction & item ),
bool SetEqual( const MbFunction & item ),
the method that returns a type from function enumeration,
MbeFunctionType IsA(),
the methods that provide access to object internal data and to edit them,
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties ).

As  a  rule,  all  functions  have  no  kinks.  MbAnaliticalFunction  function  defined  by  user  should  be 
continuous and it should not have critical points.

O.6.2. MbConstFunction Constant Function

MbConctFunction class is declared in func_const_function.h file.
MbConctFunction constant function is described by one value of value function.
double Value( double & t ) method uses

f(t) = value function.

Function parameter range is within 0≤t≤1 range. The function can't be periodic.

O.6.3. MbLineFunction Linear Function

MbLineFunction class is declared in func_line_function.h file.
MbLineFunction linear function is described by two function limit values (value1, value2) and parameter 

limit values tmin, tmax.
double Value( double & t ) method uses

f(t) = value1 (1–t) + value2 t function.

Function parameter range is within tmin≤t≤tmax range. The function can't be periodic.

O.6.4. MbCubicFunction Cubic Hermite Function

MbCubicFunction class is declared in cur_cubic_function.h file.
MbCubicFunction cubic Hermite function is described by valueList set of control points,  firctList set of 

function derivatives in control points,  tList set of function parameter values in control points and  closed 

253



function periodicity sign. There are some other function parameters that are not mandatory, they are used to  
speed up function methods.

If  tList[i],  i=0,1,...,splinesCount,  where  splinesCount=tList.MaxIndex(),  then  MbCubicFunction  cubic 
Hermite function goes through valueList[i] control point and has firctList[i] derivative in it. The function is 
constructed on base of splinesCount smoothly joined third-order Hermite splines. Each Hermite cubic spline 
describes a function segment between two neighboring control points. Each Hermite cubic spline is defined 
by two extreme points and two curve derivatives in these points.

To calculate the function, we first use the value of t parameter to find the number of the working segment 
(the number of Hermite cubic spline)  i from tList[i]ttList[i+1]. The function is calculated for the found 
working segment using its w local parameter that is determined from tList[i] and tList[i+1].

double Value( double & t ) method uses

function,

where  is the local parameter of tList[i]ttList[i+1] working segment. Cubic Hermite 

function is shown in Figure O.6.4.1.

Fig. O.6.4.1.

Function parameter range is within  tmin≤t≤tmax range, where tmin=tList[0],  tmax=tList[splinesCount]. 
The function may be periodic.

Function shape depends on location of control points, function derivatives in control points, as well as on 
tList set of parameter values in control points. When a function is constructed using control points only,  
firctList[i] derivatives are calculated by constructing a parabola that passes through three adjacent points  
valueList[i–1],  valueList[i],  valueList[i+1]  for  tList[i–1],  tList[i],  tList[i+1],  then  parabola  derivative  is 
calculated in the midpoint.

O.6.5. MbCubicSplineFunction Cubic Spline Function

MbCubicSplineFunction class is declared in cur_cubic_spline_function.h file.
MbCubicSplineFunction cubic spline function is described by valueList set of control points, secondList 

set of function second derivatives in control points,  tList set of function parameter values in control points 
and closed function periodicity sign. There are some other function parameters that are not mandatory, they 
are used to speed up function methods.

If tList[i], i=0,1,...,splinesCount, where splinesCount=tList.MaxIndex(), then cubic function goes through 
valueList[i] control point and has secondList[i] second derivative in it.

To calculate the function, we first use t parameter value to find i number of the working segment from 
tList[i]ttList[i+1]. The function is calculated for the found working segment using its w local parameter  
that is determined from tList[i] and tList[i+1].

254



double Value( double & t ) method uses

function,where  is the local parameter of tList[i]ttList[i+1] working segment. Cubic 

spline function is shown in Figure O.6.5.1.

Fig. O.6.5.1.

Function parameter range is within  tmin≤t≤tmax range, where tmin=tList[0],  tmax=tList[splinesCount]. 
The function may be periodic.

Function shape depends on location of control points and on  tList set of parameter values in control 
points. When the function is constructed using the control points,  secondList[i] derivatives are calculated 
from the fact that the second derivatives vary linearly between the control points.

O.6.6. MbCharacterFunction Character Function

MbCharacterFunction class is declared in func_analytical_function.h file.
MdCharacterFunction character function is described by function string expression, action tree used to  

calculate the expression,  tmin,  tmax parameter limits and  sense direction.  There are some other function 
parameters that are not mandatory, they are used to speed up function methods.

Character function permits to describe any function of  t parameter as a string expression that contains 
analytical functions and arithmetic operations.

double Value( double & t ) method uses an action tree to calculate string expression values.
Function parameter range is within tmin≤t≤tmax range. The function may be periodic.

O.6.7. MbMultiline Multiline

MbMultiline class is declared in multiline.h file.
MbMultiline multiline is an inheritor of MbPlaneItem class, see Figure O.6.7.1.

255



Fig. O.6.7.1.

A multiline  is  described  by  basisCurve base  contour,  vertices set  of  vertices,  equidRadii set  of  radii, 
begTipParams multiline start edge parameters, endTipParams multiline end edge parameters, processClosed 
periodicity processing sign, isTransparent transparency sign, curves set of curves, tipCurves set of end edges 
in multiline vertices, begTipCurves end edge in multiline initial vertex, endTipCurves end edge in multiline 
end vertex.

A multiline is a contour that has thickness. Contour thickness is variable. Contour edges and connection 
points of contour segments may have various forms.

A multiline is shown in Figure O.6.7.2.

Fig. O.6.7.2.

A multiline is used to exchange data with other systems.

O.6.8. MbContourWithBreaks Two-Dimensional Contour with Breaks

MbContourWithBreaks class is declared in cur_contour_with_breaks.h file.
Two-dimensional contour with breaks is an inheritor of MbContour contour, see Figure O.6.8.1.

256



Fig. O.6.8.1.

Two-dimensional contour with breaks is described by  segments set of sequentially joined curves, closed 
curve periodicity sign, breaks, visibleContours set of contour visible sections , and baseSegNumbers set of 
contour segment numbers used to define fixed break points.

A contour with breaks is shown in Figure O.6.8.2.

Fig. O.6.8.2.

A two-dimensional contour shouldn't be used as a segment of other 2D contour segments with breaks.
Two-dimensional contour with breaks is used to construct multilines only.

O.6.9. MbRegion Region

MbRegion class is declared in region.h file.
MbRegion region is an inheritor of MbPlaneItem class, see Figure O.6.9.1.

257



Fig. O.6.9.1.

A region is described by contours set of contours. Region contours are periodic and they don't cross each 
other and themselves. One contour in a set is an external contour, and all other contours are located inside it,  
they are internal contours. The first contour in contours set is always external.

A region is an interconnected set of points in 2D space, its boundaries are described by 2D periodic 
contours. Contours of the region are oriented so that when one moves along any contour, circumscribed set 
of points is located to the left from the contour. That is, external contour of the region is oriented counter-
clockwise, and internal contours are oriented clockwise. A region is shown in Figure O.6.9.2.

Fig. O.6.9.2.

Regions are used to describe 2D interconnected areas. Boolean operations can be performed on regions.

O.6.10. MbLegend Auxiliary Geometric Object

MbLegend class is declared in legend.h file.
MbLegend auxiliary geometric object is an inheritor of MbSpaceItem   class, see Figure O.6.10.1.

258



Fig. O.6.10.1.

An  auxiliary  geometric  object  is  an  abstract  class.  The  following  topological  objects  are  inhertors  of  
MbLegend class in C3D geometric kernel:
MbMarker — a point and two orthonormal vectors,
MbThread   — a thread,
MbPointsSymbol— a symbol in base points,
MbRough— surface finish symbol,
MbLeader— a leader line.

Auxiliary objects are used for various purposes, however, all of them all interact with curves, surfaces and 
objects of the geometric model.

Auxiliary objects reload the following methods of 3D geometrical object:
the methods that serve geometrical object transformation,
Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check objects for coincidence, check whether it's possible to make objects 
coinciding and make them coinciding:
MbSpaceItem& Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceItem & item ),
bool IsSimilar( const MbSpaceItem & item ),
bool SetEqual( const MbSpaceItem & item ),
the methods that return a type from enumeration of geometric objects,
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family(),
the methods that provide access to object internal data and to edit them,
MbProperty & CreateProperty( MbePrompt name ),
GetProperties( MbProperties & properties ),
SetProperties( MbProperties & properties ),
the method that fills up a polygonal copy of the geometrical object,
CalculateWire( double sag, MbMesh & mesh ).

O.6.11. MbMarker Marker

MbMarker class is declared in marker.h file.
MbMarker auxiliary object is described by origin point and two orthogonal vectors (axisZ, axisX).
A marker is used to set restrictions on geometric objects in 3D space. A marker is a representative of the  

geometric object, it can replace a 3D point, a line, a plane, local coordinate system and other objects during  
work with geometric constraints.

O.6.12. MbThread Thread Graphic Symbol

MbThread class is declared in mb_thread.h file.
MbThread thread graphic symbol is described by  place thread local coordinate system,  radObj initial 

radius of thread in the surface, radThr initial radius of thread in the solid, length thread length, angle thread 
cone angle, name thread name, and solids set of solids. There are some other parameters of this object that 
are not mandatory and that are used to speed up object methods.

The axis of  a threaded joint  goes along  place.axisZ axis.  A name is  used to identify thread graphic 
symbol among flat projections of solid faces from  solids set.  Thread graphic symbol is shown in Figure 
O.6.12.1.

259



Fig. O.6.12.1.

Thread graphic symbol describes a threaded joint element of the geometric model, it is used to construct  
flat projections of threaded joints.

O.6.13. MbPointsSymbol Symbol

MbPointsSymbol class is declared in mb_symbol.h file.
MbPointsSymbol symbol is an inheritor of MbSymbol class. MbPointsSymbol is described by points set 

of identifiers and steps parameters that contain data on complex cut lines.
The object contains data on base points of the symbols associated with elements of the geometric model.
The object is used to construct flat projections of symbols, for which it is sufficient to know the location 

of the base points. It defines the base points of symbols in the elements of the geometric model.

O.6.14. MbRough Surface Finish Symbol

MbRough surface finish symbol.
MbRough class is declared in mb_rough.h file.
MbRough  surface  finish  symbol  is  an  inheritor  of  MbPointsSymbol class.  Surface  finish  symbol  is 

described by  points set  of  3D points,  steps  data on complex cut sections,  and  item topological  binding 
object.

The  object  contains  data  on  the  base  points  of  surface  finish  symbol  that  are  associated  with  item 
topological object.

The  object  is  used  to  construct  flat  projections  of  surface  finish  symbol  for  item geometric  model 
element.

O.6.15. MbLeader Leader Line Symbol

MbLeader class is declared in mb_rough.h file.
MbLeader leader line symbol is an inheritor of MbSymbol class. Leader line symbol is described by a set  

of identifiers and branches set of surface finish symbols.
The object contains data on leader line used to show surface finish for topological objects.

260



The object is used to construct flat projections of surface finish leader line symbol for geometric model 
elements.

261



O.7. TOPOLOGICAL OBJECTS 

Geometric properties that don't depend on quantitative characteristics (lengths and angles) and that reflect  
continuous relationship of object elements and its environment are called topological properties. Topological  
objects  of  C3D  geometric  kernel  also  describe  geometrical  properties  of  the  object  that  depend  on 
quantitative characteristics, as well as geometrical properties that reflect continuous relationship of the object  
with the neighboring elements. Topological objects are constructed based on surfaces, curves and points by 
adding to their data, properties, and methods new data, properties, and methods that reflect connections of  
the object with its environment.

O.7.1. MbTopologyItem Topological Object

MbTopologyItem class is declared in topology_item.h file.
Unlike  other  topological  objects,  MbTopologyItem  has  name,  changed change  sign  and  label. 

MbTopologyItem is an inheritor of MbTopItem topological object, see Figure O.7.1.1.

Fig. O.7.1.1

MbAttrContainer container provides attributes for named topological objects.
The following topological objects that inherit MbTopologyItem class are implemented in C3D geometric  

kernel:
MbFace – a face,
MbEdge – an edge,
MbVertex – a vertex.

MbEdge edge has MbCurveEdge an inheritor: a face that joins edges.
A named topological object has the following methods:

methods used to transform the topological object:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
methods used to work with topological object name:
MbName & GetName(),
SimpleName & GetMainName(),
SimpleName & GetFirstName(),
a method that returns type from enumeration of topological objects,
MbeTopologyType IsA().

Named topological objects are used as elements to construct objects of geometric model.



O.7.2. MbFace Face

MbFace class is declared in topology.h file.
MbFace face is an inheritor of MbTopologyItem topological object; it is a limited section of a surface that 

was assigned normal direction and has defined borders. We'll call the side of surface and face, gaze direction  
to which is directed opposite to the normal "outer side"; we'll call the other side "inner side". The sides of  
MbSurface surface are not equal relative to the normal, since a surface always has an outer side and an inner 
side. Unlike surface, a face permits to assign normal direction, and hence to assign outer side and inner side.

Data set  of  the face includes a pointer  to  MbSurface*  surface,  sameSense coincidence sign of  face 
normal direction and surface normal direction, as well as RPArray<MbLoop> loops set of face cycles. A face 
has some other parameters that are not mandatory, they are used to speed up face methods.

A pointer to a surface can't be zero. Normal to face and normal to surface coincidence sign takes "true"  
value if the normals coincide, otherwise the sign takes "false" value. We'll call the side of face "outer side" if 
gaze direction to it opposite is to normal direction; we'll call the other side "inner side".

Face  cycles  describe  face  borders.  Each  face  border  is  closed.  Each  cycle  is  described  by 
MbOrientedEdge sequence order of edges along the border. The number of face cycles is equal to the number 
of face borders at the surface. One face border is the outer border, it contains the borders of internal cutouts.  
The first cycle in the container cycle describes the outer border of the face and it contains inner cycles that  
describe inner face borders. Outer face cycle is oriented counterclockwise, and inner cycles are oriented  
clockwise when the gaze direction is opposite to face normal. Thus, when we move along the outer side of 
face cycle, the face is always on the left side. In Fig. O.7.2.1, arrows indicate the directions of face cycles  
and face normal.

Fig. O.7.2.1.

Cycles of one face should not cross each other and themselves.
The face can be named and it can have attributes. A name can be used to identify the face, and attributes 

can provide additional face data, such as color, transparency, origin, etc.
A face is used for both solid-state and hybrid simulation.

O.7.3. MbEdge Edge

MbEdge class is declared in topology.h file.
MbEdge is an inheritor  of  MbTopologyItem topological  object;  it  is  a curve with assigned direction. 

Direction of MbCurve3D curve is strictly related to its parameter increase direction. Unlike a curve, an edge 

263



may be directed either in curve parameter increase direction or curve parameter decrease direction. An edge 
always starts and ends in some MbVertex   vertex.

Edge  data  set  contains  MbCurve3D*  curve pointer  to  curve,  sameSense edge  direction  and  curve 
direction coincidence sign, MbVertex* begVertex pointer to start vertex, and MbVertex* endVertex pointer 
to end vertex. In Fig. O.7.3.1, you can see an edge.

Fig. O.7.3.1.

A pointers to curve or vertex can't be zero. Coincidence sign of edge curve directions takes "true" value, if  
edge direction and curve direction coincide, if edge direction and curve direction are opposite then it takes  
"false" value. If an edge begins and ends in the same vertex then such edge is closed one. Pointers to start  
vertex and end vertex of a closed edge are equal.

An edge can be named and it can have attributes. A name can be used to identify the edge, attributes can  
provide additional data on edge, e.g., color, display style, origin, etc.

Edges are used for wireframe simulation.

O.7.4. MbVertex Vertex

MbVertex class is declared in topology.h file.
MbVertex is an inheritor of MbTopologyItem topological object; it is a point with known location error. 

Vertex data set includes MbCartPoint point and tolerance location error for this point.
A vertex can describe single wireframe point or edge junction point. Any number of edges can meet in a  

vertex. Meeting edges point to the same shared vertex. In Fig. O.7.4.1, you can see a vertex that is the  
meeting point of three edges.

Fig. O.7.4.1.

If edges are joined inaccurately, then vertex location error is the distance from the vertex point to the most  
remote edge. In Fig. O.7.4.2, you can see a tolerant vertex, where four edges meet.

264



Fig. O.7.4.2.

A vertex can be named and it can have attributes. A name can be used to identify the vertex, and attributes  
can provide additional data on the vertex, e.g. color, display style, origin, etc.

Vertices are used in all simulation methods.

O.7.5. MbCurveEdge Face Edge

MbCurveEdge class is declared in topology.h file.
MbCurveEdge is an inheritor of MbEdge edge; it is an edge constructed on MbSurfaceIntersectionCurve 

surface intersection curve. MbCurveEdge edge is designed to describe a segment of face border. Unlike 
MbEdge edge, MbCurveEdge describes not just a curve, but a segment joining two faces or a segment of  
face edge.

Data set  of  face edge includes a pointer  to  MbSurfaceIntersectionCurve *  curve surface intersection 
curve, sameSense edge direction and curve direction coincidence sign, MbVertex  * begVertex pointer to start 
vertex, MbVertex* endVertex pointer to end vertex, MbFace* facePlus pointer to a face located to the left 
from the edge, and MbFace* faceMinus pointer to a face located to the right from the edge. In Fig. O.7.5.1, 
you can see an edge joining two faces.

Fig. O.7.5.1.

Face edge may describe a segment that joins two different faces. In this case, pointers to faces located to  
the left and to the right from the edge are not zero and they are not equal to each other. Surfaces located in  

265



data structures of faces connected by an edge coincide with surfaces located in edge curve data set:
facePlus->surface->GetSurface() == curve->curveOne.suface and
faceMinus->surface->GetSurface() == curve->curveTwo.suface
or
facePlus->surface->GetSurface() == curve->curveTwo.suface and
faceMinus->surface->GetSurface() == curve->curveOne.suface.

If a face is closed by one or both face surface parameters, there are border segments where the face meets  
with itself. Such edge is a seam. In this case, pointers to faces located to the left and to the right from the  
edge are equal to each other, see Figure O.7.5.2.

Fig. O.7.5.2.

Face edge can describe a segment of face border. Such edge is a boundary one. In this case, pointer to the 
face located to the left or to the right of the edge is equal to zero, see Figure O.7.5.3.

Fig. O.7.5.3.

Edge having zero length is a polar one and it describes face pole. Pole edge is not a boundary edge, as the  
face of polar edge has no border. As a rule, a polar edge is located in specific face surface points. Some curve 
corresponds to a polar segment in parameters area of face surface. Pointers to start and end vertices of a polar  
edge are equal. Polar edge is shown in Figure O.7.5.4.

266



Fig. O.7.5.4.

As for the polar edge, a pointer to the face located to the left or to the right from the edge is equal to zero.  
Intersectional curve of polar edge has the following data:
curve->curveOne.suface == curve->curveTwo.suface, and 
curve->curveOne.curve segment is  a copy of the  curve->curveTwo.curve segment.

A face edge can be named and it can have attributes. A name can be used to identify the edge, and  
attributes can provide additional data, such as color, style, origin, etc.

Edge face is used for solid-state and hybrid simulation.

O.7.6. MbLoop Face Cycle

MbLoop class is declared in topology.h file.
MbLoop face cycle is an inheritor of MbTopItem topological object and it describes a sequence of edges 

that completely fill some face border.
Cycle data set includes RPArray<MbOrientedEdge> edgeList set of oriented edges in their order along 

the face border. Cycle has some other parameters that are not mandatory and that are used to speed up cycle 
methods.

 Directions of oriented edges and cycle direction coincide. End point of each cycle oriented edge is joined 
with the start point of the next oriented edge, see Figure O.7.6.1.

Fig. O.7.6.1.

End point of the last oriented cycle edge is joined with the start point of the first oriented edge.
In Fig. O.7.6.2, you can see a cycle of a spherical face that consists of four oriented edges, two of these  

267



edges are constructed on seam edge, and two others are pole edges.

Fig. O.7.6.2.

In sphere parameter face, spherical face cycle will be a rectangular quadrangle.
A cycle is always closed just like a face border. A cycle is directed so that a face is always to the left when  

we move along the cycle from face outside side.

O.7.7. MbOrientedEdge Oriented Face Edge

MbOrientedEdge class is declared in topology.h file.
MbOrientedEdge oriented face edge is an inheritor of MbTopItem topological object and it describes face 

border segment. Data structure of oriented edge contains MbCurveEdge* сurveEdge face edge coincidence 
sign of face edge direction with oriented edge direction or face cycle (in this case direction is defined by 
orientation parameter).

If  сurveEdge face edge direction coincides with cycle direction, then  orientation==true holds for the 
corresponding oriented edge of this face. If  сurveEdge face edge direction does not coincide with cycle 
direction, then orientation==false holds for corresponding oriented edge of this face. In Fig. O.7.7.1, you can 
see two oriented edges constructed on the same сurveEdge face edge.

268



Fig. O.7.7.1.

In general,  MbCurveEdge face edge is included in two cycles that belong to faces joined by this edge. 
Face edge is included in one cycle with orientation==true parameter; this face is located to the left from the 
edge,  and  facePlus data  field  points  to  this  face.  As  for  other  cycle,  face  edge  is  included  in  it  with 
orientation==false orientation sign; this face is located to the right from the edge, and faceMinus data field 
points to this face. Thus, adjacent faces and edges joining them are interrelated.

O.7.8. MbFaceShell Set of Faces

MbFaceShell class is declared in topology_faceset.h file.
MbFaceShell set of faces is an inheritor of MbTopItem topological object. MbFaceShell data set includes 

RPArray<MbFace> faceSet set of faces and closed closure sign for a set of faces. There are some other data 
for a set of faces that are not mandatory and that are used to speed up the methods for a set of faces.

Usually a set of faces describes an interconnected segment of simulated object surface. Interconnected  
faces that belong to a set of faces meet the following conditions: the faces are joined by shared edges, each  
edge joins only two faces so that the outer side of one face transfers to the outer side of another face, so the  
shared surface of the faces does not intersect itself.

In Fig. O.7.8.1, you can see a set of interconnected faces. All edges belong to two cycles, all facePlus and 
faceMinus edge pointers are not zero, and MbSurfaceIntersectionCurve curves that were used to construct 
face edges meet the following condition: curveOne.surface!=curveTwo.surface.

269



Fig. O.7.8.1.

Faces shown in Figure O.7.8.1 form a shared closed surface, the outer side of each face transfers to the  
outer side of the adjacent face. closed sign has "true" value for a set of faces that have no boundary edges.

If at least one face in the set has at least one boundary edge, then closed sign of the set of faces takes 
"false" value. In Fig. O.7.8.2, you can see a set of faces, some faces in the set have boundary edges. A 
boundary edge is included in one cycle, and only one of facePlus or faceMinus pointers of face boundary 
edge  is  not  equal  to  zero,  for  MbSurfaceIntersectionCurve curves  that  were  used  to  construct  edges 
curveOne.surface==curveTwo.surface and  buildType parameter  =cbt_Boundary.  A polar  edge is  not  a 
boundary edge, as it does not form an edge.

Fig. O.7.8.2.

Interconnected set is called a closed shell if the faces of the set have no borders. If connected faces have 
at least one boundary edge, then such interconnected set is called open shell. Please note that closed shell and 
open shell make a connected set of faces joined with each other.

Set of faces may consist of several not interconnected parts. In Fig. O.7.8.3, you can see a set of faces 
describing two open shells.

270



Fig. O.7.8.3.

Formally, there are no restrictions for a set of faces. A set may contain separate faces. In Fig. O.7.8.4, you 
can see a set of separate faces. Each face shown in Figure O.7.8.4 forms a separate shell, all face edges are 
boundary edges.

Fig. O.7.8.4.

271



The main shell methods are methods of its transformation in space:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
faces, edges and vertices search methods, as well as methods used to determine the location of a point with  
respect to a closed shell:
bool DistanceToBound( const MbCartPoint3D &,...),
bool PointClassification( const MbCartPoint3D &,...).

An open shell covers only a part of boundary surface of the simulated object. Open shells are used to  
simulate a surface. If we add to a closed shell a set of its inner points, then we'll receive a solid body. Closed 
shells are used to simulate solid solids. Faces are cut and joined when a shell is constructed. C3D geometric  
kernel methods provide this. Closed and open shells are used to construct objects in a geometric model.  

O.7.9. Copying a Set of Faces

Each construction method that uses a set of faces represented as MbFaceShell or MbSolid modifies some 
vertices, edges and faces of original objects. In order to speed up construction and keep the original set of  
faces, MbFaceShell object data are copied completely or partly. C3D geometric kernel uses four methods to 
copy MbFaceShell  set  of  faces;  these  methods  are  defined  in  MbeCopyMode  enumeration.  As  a  rule,  
construction  methods  together  with  modified  set  of  faces  transfer  MbeCopyMode  type  parameter  that  
controls transmission of faces, edges and vertices from the original object to the constructed object.

MbeCopyMode enumeration is declared in mb_enum.h file. MbeCopyMode type parameter can take one 
of the following four values: cm_Copy, cm_KeepSurface, cm_KeepHistory, cm_Same.

If MbeCopyMode = cm_Copy then the original set of faces of modified object is fully copied, so a new 
object and the original one will not have shared surfaces, curves, faces, edges, vertices and other objects. In  
this case, the new object and the original one will not be interrelated.

If MbeCopyMode = cm_KeepSurface, then the new object and the original one will have the same base 
surfaces of faces. This option is used when high construction speed is required.

If  MbeCopyMode  =  cm_KeepHistory, then  the  new object  and  the  original  one  will  have  the  same 
vertices, base surfaces of faces and faces that were not modified by construction or other action. This option  
is used to provide the lowest memory usage.

If MbeCopyMode = cm_Same, then all required data of the original object will be moved to the newly 
constructed object, so the original object should be deleted after construction. This option is used when the 
original object wouldn't be required and it was constructed specifically for this construction.

MbeCopyMode  enumeration  is  included  in  the  method  used  to  copy  MbFaceShell*  set  of  faces: 
MbFaceShell::Copy(MbeCopyMode, MbShellHistory*). This method is used in solid construct operations 
with input parameters containing other solids.

For enumeration value cm_Copy, the original set of faces and its copy don't have shared data. The option 
when the original set of faces and its copy have shared base surfaces corresponds to    cm_KeepSurface 
enumeration value. The option when the initial set of faces and its copy have the same base surfaces, vertices 
and  faces  not  modified  by  any operation  corresponds  to  cm_KeepHistory enumeration  value.  For  this 
purpose, Copy(...) method uses a pointer to MbShellHistory object that stores correspondence between the  
original set of faces and its copy. After the operation, a copy of the set of faces is transferred by a parameter  
in MbShellHistory::SetOrigins(MbFaceShell&) method to replace unchanged faces in the copy with the 
initial faces from the original set of faces. The option when the set of faces is not copied in Copy(...) method 
corresponds to cm_Same enumeration value. One should note that if the operation fails, then the original set  
of faces will be modified.

MbFaceShell* Duplicate(MbRegDuplicate* iReg) method can be used to copy MbFaceShell set of faces. 
MbRegDuplicate object is used to save in the copy the structure of reciprocal links available in the original 
set of faces. The copied set of faces and its copy will not be connected.

272



O.7.10. Naming of Faces, Edges and Vertices

Faces, edges and vertices have MbName name in a data set. MbName class is declared in name_item.h 
file. Faces, edges and vertices are named by C3D geometric kernel during construction of MbFaceShellset of 
faces  in  all  shape-generating  operations.  Parameters  of  each  shape-generating operation  contain 
MbSNameMaker object.  MbSNameMaker object contains the main operation name and a belonging to the 
SimpleName type container of simple names that are used to name faces.  MbSNameMaker object names 
newly constructed faces using the container of simple names. Face names will be unique if the elements of 
the container of simple names are unique. Edges are named by hashing the names of the faces joined by 
them. Vertices are named by hashing the names of edges joined by them. In addition,  MbSNameMaker 
object contains construction method version and ensures storage of old construction methods when they are  
modified during development of the geometric kernel.

273



O.8. OBJECTS OF GEOMETRIC MODEL

A class of geometrical model objects belongs to the class of three-dimensional geometric objects. For  
example,  the  geometric  model  has  an  object  called  "solid"  that  is  used  for  solid,  surface  and  direct  
simulation. Solids are also constructed when objects made of sheet metal are simulated. Besides a solid,  
objects  of  geometric  model  include  wire  frame,  point  frame  and  polygonal  object.  Assemblies  can  be  
constructed using geometric model objects. Such geometric model objects as local coordinate system can be 
used for auxiliary constructions. In addition, geometric model provides an object to construct sketches.

O.8.1. MbItem Geometric Model Object

MbItem class is declared in model_item.h file.
MbItem  object  of  geometric  model  is  an  inheritor  of  MbSpaceItem,  MbTransactions  and 

MbAttributeContainer classes. C3D geometric kernel works with geometric model objects shown in Figure 
O.8.1.1.

Figure O.8.1.1.

MbTransactions construction log contains the data required to construct the object and it permits to repeat 
object construction with edited parameters. MbAttrContainer container provides the attributes to geometric  
model objects. Thus, geometric model objects contain the following data in addition to their own specific  
data:
size_t m_countRegistrable is the number of object registrations during writing and reading,
ptrdiff_t useCount is the number of times the object was used by other objects,
std::vector<MbCreator *> transactions is the ordered set of object constructors,



std::multimap<int, MbAttribute*> attributes is object attributes set.
The following objects of geometric model are inheritors of MbItem class:

MbSolid – solid body,
MbWireFrame – wire frame,
MbPointFrame – point frame,
MbMesh – polygonal object,
MbInstance – insertion of geometriс model object,
MbAssembly – assembly unit of geometric model objects,
MbAssistingItem – auxiliary object,
MbSpaceInstance – insertion of a 3D object,
MbPlaneInstance – insertion of a set of 2D objects.

The main methods of geometric model objects are methods providing editing and visualization of the  
objects.
bool RebuildItem( MbeCopyMode sameShell, RPArray<MbSpaceItem> * items ) method
repeats  construction of  the  object  using the construction log.  This  method is  called after  editing object  
internal data.
bItem * CreateMesh( MbeStepData data, bool wire, bool grid, MbRegDuplicate * iReg ) method
constructs a polygonal copy of the object. If the object is an assembly unit or an insertion, then object copy 
will also be an assembly unit or an insertion with polygonal objects.
bool AddYourMesh( MbeStepData data, bool wire, bool grid, MbMesh& mesh ) method
adds a polygonal copy into mesh object.
bool NearestMesh( MbeSpaceType sType, MbeTopologyType tType, MbePlaneType pType,
                                 const MbAxis3D & axis, double maxDistance, double & t, double & dMin,
                                 MbItem *& find, SimpleName & findName,
                                 MbRefItem *& element, SimpleName & elementName,
                                 MbPath & path, MbMatrix3D & from ) method
searches for the nearest find polygon object, its element, their names (findName and elementName), as well 
as path in assembly unit structure, and from transformation matrix into global coordinate system.

Objects of geometric model reload the following 3D object methods:
the methods involved in transformation of geometrical objects,
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check for coinciding objects, check whether it's possible to make objects  
coinciding and make them coinciding:
MbSpaceItem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceItem & item ),
bool IsSimilar( const MbSpaceItem & item ),
bool SetEqual( const MbSpaceItem & item ),
the methods that return a type from enumeration of geometric objects,
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family(),
the methods that ensure access to object internal data and their editing:
MbProperty & CreateProperty( MbePrompt name ),
GetProperties( MbProperties & properties ),
SetProperties( MbProperties & properties ).

O.8.2. MbSolid Solid Body

MbSolid class is declared in solid.h file.
MbSolid solid body (or just solid) is an inheritor of MbItem class, and it is described by MbFaceShell* 

outer set of faces and multiState connectivity type.

275



A solid is a set of edges that are joined together by edges and describe the surface of the simulated object. 
A solid can describe one or more interconnected sets of points. multiState connectivity type indicates that a 
solid describes one or several interconnected sets of points (in the latter case, a solid can be divided into 
several solids).

outer set  of  solid  faces  can  describe  two  fundamentally  different  sets  of  points,  depending  on  the  
presence of boundary edges. If the set of faces has no edge then the solid describes a set of points located on 
surfaces of faces and on inside surfaces of these faces. Such solid is called  closed and is described by a 
closed shell. A closed solid is shown in Figure O.8.2.1.

Fig. O.8.2.1.

If the set of faces has one or several edges, then the solid describes a set of points located on face surfaces  
of only. Such a solid is called  open and is described by an open shell.  An open solid is shown in Figure 
O.8.2.1.

Fig. O.8.2.2.

In most cases, a closed solid is described by one interconnected set of faces, that is, by one shell. If a solid  
has cavities, then they are described by several interconnected sets of faces. In Figure O.8.2.3, you can see a  
closed solid described by two closed shells, an external shell and an internal one (the latter shell is located 
inside the first one).

276



Fig. O.8.2.3.

The solid is semitransparent, so you can see a cavity inside it.
Solids support various operations (such as Boolean operations) on them, these are sets of actions that 

result  in construction of solids having different shape.  The Result  of  subtraction of two closed solids is 
shown in Fig. O.8.2.4.

Fig. O.8.2.4.

Results of operation on a closed solid and a non-closed solid are completely different as the operations are 
executed on different sets of points. A result of subtraction of two closed solids is shown in Figure O.8.2.5.

277



Fig. O.8.2.5.

A solid can be multiply-connected (multi-part), that is, they can consist of several separate parts. In this 
case, multiState is equal to ms_Multiple. Doubly-connected solid described by two closed shells is shown in 
Figure O.8.2.6.

Fig. O.8.2.6.

Such a solid can be divided into two simply connected closed solids using ::DetachParts (...) method. A 
solid in Figure O.8.2.6 is semitransparent. A doubly-connected solid described by two non-closed shells is  
shown in Figure O.8.2.7.

278



Fig. O.8.2.7.

Such a solid can be divided into two simply connected non-closed solids.
Solids are constructed using the methods provided by C3D geometric kernel. Solids with simple shapes 

are constructed by points,  curves and surfaces. Operations permit you to construct  more complex solids 
based on simple ones. You can edit initial solids and construct modified ones by changing the parameters in 
MbTransactions construction log or by directly modifying the elements of previously constructed solids. 
Open solids are used for surface simulation. Open solid permits you to focus on complex shapes of simulated 
objects.

O.8.3. MbWireFrame Wireframe

MbWireFrame class is declared in wire_frame.h file.
MbWireFrame  wireframe  is  an  inheritor  of  MbItem сlass and  is  described  by 

std::vector<MbEdge*>edges set of edges, parts number of interconnected parts and closed boundary vertices 
absence sign.

A wireframe is a set of edges that are joined at vertices and describe frame structure of simulated object.  
A wireframe can describe one or more interconnected sets of points.  parts number of interconnected parts 
indicates that wireframe describes one or several interconnected sets of points (in the latter case, a wireframe 
can be divided into several wire frame).

A wireframe can be closed or open, depending on the presence or absence of boundary vertices. Closed 
wireframe is shown in Figure O.8.3.1.

Fig. O.8.3.1.

279



Open wireframe is shown in Figure O.8.3.2.

Fig. O.8.3.2.

An open wireframe consisting of two interconnected sets of edges is shown in Figure O.8.3.3.

Fig. O.8.3.3.

Closed wireframe consisting of two interconnected sets of edges is shown in Figure O.8.3.4.

Fig. O.8.3.4.

A wireframe can be used to construct trajectories, space sketches, as well as for auxiliary constructions.

280



O.8.4 MbPointFrame Point Frame

MbPointFrame class is declared in point_frame.h file.
MbWireFrame point  frame  is  an  inheritor  of  MbItem class  and  it  is  described  by 

std::vector<MbVertex*>vertices set of points presented as vertices.
Point frame is shown in Figure O.8.4.1.

Fig. O.8.4.1.

Point frame can be used either to position other objects or for auxiliary constructions.

O.8.5. MbMesh Polygonal Object

MbMesh class is declared in mesh.h file.
MbMesh polygonal object is an inheritor of MbItem class and it is described by RPArray<MbGrid>grids 

set of triangulations, RPArray<MbPolygon3D>wires set of polygons, RPArray<MbApex3D>peaks set of 
apexes, MbRefItem* item pointer to original object, type, cube dimensional cube and closed closure sign.

Polygonal object is a set of triangular and quadrangular plates, polylines and individual points. One of the 
methods used to construct a polygonal object is associated with approximation of other geometric model 
objects, for example, a solid. Every ith solid face is approximated by grids[i] triangulation, every jth solid 
edge is approximated by wires[j] polygon, every kth vertex is associated with peaks[k] apex, closed closure 
sign corresponds to solid closure. One other way to construct a polygonal object is to import data, using  
polygon representation converter.

MbGrid  triangulation  is  Sarray<MbFloatPoint3D>points set  of  points  and 
Sarray<MbFloatVector3D>normals set of normals (the number of points is equal to the number of normals), 
Sarray<MbFloatPoint>params set of two-dimensional points of surface parametric area (the number of 2D 
points  is  equal  to  the  number  of  3D points,  otherwise  it  is  equal  to  zero,  i.  e.,  the  set  can be empty),  
Sarray<MbTriangle> triangles   set of triangular plates in the form of three indices of  points set of points, 
SArray<MbQuadrangle>quadrangles set of quadrangular plates in the form of four indices of points set of 
points. Triangulation plates approximate some surface.

MbPolygon3D polygon is an ordered set of points,  their serial connection permits you to construct a 
polyline that approximates some curve.

MbApex3D apex is a point that contains additional data.
item pointer to the original object may be equal to zero, type type may be undefined.
A vector image of a polygonal object is shown in Figure O.8.5.1.

281



Fig. O.8.5.1.

A toned image of a polygonal object is shown in Figure O.8.5.2.

Fig. O.8.5.2.

In Figure O.8.5.2, you can see individual triangles of the object, this is due to the fact that direction of 
normals  in  each  triangle  is  constant.  If  direction  of  normals  in  triangulation  triangles  is  permanently 
changing, then individual object triangles become invisible, see Figure O.8.5.3.

282



Fig. O.8.5.3.

You can use  MbItem::CreateMesh(...) or  MbItem::AddYourMesh(...) method to construct a polygonal 
object.  Polygon  object  is  used  to  visualize,  calculate  and  manufacture  simulated  objects.  The  main 
advantages of polygons are ease of use and high speed calculations, for example, for intersection with a  
straight line.

O.8.6 MbInstance Insertion

MbInstance class is declared in instance.h file.
MbInstance insertion is an inheritor of MbItem class, it is described by MbItem* item object of geometric 

model and  MbPlacement3D place local coordinate system. Insertion is  item object that was moved into 
place local coordinate system.

Insertion has all properties of  item object. The difference is that  Move(...),  Rotate(...),  Transform(...) 
methods modify place local coordinate system not modifying item object.

Object insertion may contain a solid, a wireframe, a point frame and a polygonal object,  but it  can't  
contain other insertion or assembly unit.

O.8.7. MbAssembly Assembly Unit

MbAssembly class is declared in assembly.h file.
MbAssembly  assembly  unit  or  assembly  is  an  inheritor  of  MbItem class  and  it  is  described  by 

std::vector<MbItem*>assemblyItems set of objects of geometric model and  MbPlacement3D place local 
coordinate system.

Assembly is a set of geometric model objects that can be processed as a single entity.
Assembly unit is shown in Figure O.8.7.1.

283



Fig. O.8.7.1.

An assembly unit may contain other assembly units, i.e., it may have a tree structure.

O.8.8. MbSpaceInstance Three-Dimensional Object Insertion

MbSpaceInstanсe class is declared in space_instanse.h file.
MbSpaceInstanсe  3D  object  insertion  is  an  inheritor  of     MbItem class,  and  it  is  described  by 

MbSpaceItem* spaceItem geometric object.
Insertion acts as geometric object wrapper that permits you to process it as geometric model object. An 

insert adds to an ordinary geometric object a construction log, attributes and   MbItem geometric model object 
methods. 3D object insertion is intended for auxiliary constructions. Surface insertion is shown in Figure 
O.8.8.1.

284



Fig. O.8.8.1.

Object  insertion can contain  MbSurface surface,  MbCurve3D curve,  MbPoint3D point  or  MbLegend 
auxiliary geometric object. Geometric object insertion is not used for objects that inherit an object of MbItem 
geometric model object (a solid, a wireframe, a point frame, a polygon, an assembly or an insertion).

O.8.9. MbPlaneInstance Two-Dimensional Object Insertion

MbPlaneInstanсe class is declared in plane_instanse.h file.
MbPlaneInstanсe  2D  object  insertion  is  an  inheritor  of     MbItem class  and  it  is  described  by 

std::vector<MbPlaneItem>planeItems set  of  2D  geometric  objects  and  MbPlacement3D place local 
coordinate system. Two-dimensional objects are located in XY plane of the local coordinate system.

Insertion acts as a wrapper of 2D geometric objects that permits you to process them as geometric model  
object. An insert adds construction log, attributes and methods of  MbItem geometric model object to 2D 
geometric objects. Two-dimensional object insertion is intended for auxiliary constructions. An insertion of  
2D curves is shown in Figure O.8.9.1.

Fig. O.8.9.1.

An insertion of 2D objects can contain MbCurve 2D curve, MbMultiline multiline or MbRegion region.

285



O.8.10. MbAssistingItem Auxiliary Object

MbAssistingItem class is declared in assisting_item.h file.
MbAssistingItem auxiliary object of geometric model is an inheritor of MbItem class and it is described 

by MbPlacement3D place local coordinate system. An auxiliary object is used to position other objects. An 
auxiliary object has a construction log, attributes and methods of MbItem geometric model object.
auxiliary constructions. An auxiliary object is shown in Figure O.8.10.1.

Fig. O.8.10.1.

286



R.1. CONSTRUCTING TRIANGULATION

C3D geometric kernel constructs a polygonal representation of geometric model based on its boundary 
representation. A polygonal representation contains a set of triangulations. Every triangulation approximates 
a single face of the modeled object by rectangular and triangular flat plates. Polygonal representation is used  
to visualize a geometric model, calculate inertial characteristics and detect collisions of model elements.

R.1.1. Triangulation Calculation Control

Methods that construct polygonal representations use MbStepData structure shown in Figure R.1.1.1 as 
their input. 

Figure R.1.1.1.

MbStepData structure is declared in mb_data.h file. MbStepData structure contains the following data:
• unsigned char stepType is the field that defines the method used to calculate parameter increments,
• double sag is the maximum allowable deviation of deflection,
• double angle is the maximum allowable deviation of tangents or normals by angle,
• double length is the maximum allowable distance between two adjacent points,
• unsigned int maxCount is the maximum number of cells per row or column of triangulation grid.

MbStepData structure controls grid density of a polygonal object, it contains all the data required to 
calculate parameter increment when moving along model curves and surfaces.  stepType field defines the 
method used to calculate the parameter increment when moving along a curve or a surface. This field may 
contain masks of MbeStepTypy enumeration declared in mb_enum.h file:

• ist_SpaceStep is used to visualize the geometric shape;
• ist_DeviationStep is used for construction operations;
• ist_MetricStep is used for 3D printers;
• ist_ParamStep is  used to  visualize  the  geometric  shape of  the  objects  with  snapping texture  to  

surface parameters;
• ist_CollisionStep is used to detect collisions of model elements;
• ist_MipStep is used to calculate inertial characteristics.

sag parameter  limits  the  increment  of  curve or  surface parameter  taking into account  the  maximum 
allowable deviation from the original polygon object by deflection. angle parameter limits the increment of 
curve or surface parameter taking into account the maximum allowable deviation from the original polygon 
object by angular deflection of tangential curves or surface normals at two adjacent points, their separation is  
equal  to the increment.  length parameter limits the increment of curve or surface parameter taking into 
account the maximum allowable size of polygon element (triangle side or polygon segment).  maxCount  
parameter limits the increment of curve or surface parameter taking into account the maximum allowable  
number of splittings per row or column of the triangulation grid.

Methods that construct polygonal representations use MbFormNote structure shown in Figure R.1.1.2 as 
their input. 



Figure R.1.1.2.

MbFormNote structure is declared in mb_data.h file. MbFormNote contains the following data:
• bool wire is the flag for constructing the polygonal object,
• bool grid is the flag for constructing the polygonal object,
• bool seam is the flag indicating that seam edges are not ignored.

MbFormNote structure defines the method for constructing the polygonal object: If wire==true then the 
polygonal  object  is  filled  with  broken  lines,  if  grid==true  then  the  polygonal  object  is  filled  with 
triangulations.  seam parameter  defines  the  method  for  representing  seams  in  the  polygonal  object:  If  
seam==true then triangulation is not closed by seams and seam edges are treated as ordinary edges. Their 
points are considered to be edge in triangulation and polygons are constructed for them, if seam==false then 
triangulation is  closed by seams and seam edges are  ignored,  closed triangulations  are  constructed and 
polygons are not constructed for edges.

R.1.2. Constructing a Polygonal Object

Virtual method for geometric model objects
MbItem *
MbItem::CalculateMesh ( const MbStepData & stepData,
                                            const MbFormNote & note,
                                            MbRegDuplicate * iReg ) const
constructs a polygon object approximating the specified object of the geometric model.

Input parameters of the method are:
• stepData are the data required to calculate approximation step,
• note is the method used to construct the polygonal object,
• iReg is the registrar of the copied objects.

In  case  of  success,  the  method  returns  a  pointer  to  the  newly constructed  object  of  the  geometric  
modelMbItem*, otherwise zero is returned.

The method is declared in item.h file and header files of MbItem   descendant files.
This method approximates model objects and creates polygonal copies having similar structures. For a  

solid, a wire frame or a point frame, this method will create a polygonal object MbMesh that approximates 
the  original  object,  then  the  method  will  return  a  pointer  to  the  newly  created  object.  Each  grids[i] 
triangulation  of  the  object  MbMesh will  approximate  the  ith  face;  each  wires[i]  polygon of  the  object 
MbMesh will approximate the ith edge, each peaks[i] apex of the object MbMesh will approximate the ith 
vertex. For a polygonal object MbMesh  , this method will create a polygonal copy object. For an insertion, 
this method will create the insertion with the object that will create the same method for insertion content.  
For an assembly unit, this method will create the assembly unit with the objects that will create the same  
method for assembly unit objects.

stepData parameter controls the density of polygonal object grid and contains all the data required to  
calculate parameter increment when moving along model curves and surfaces.  note parameter defines the 
method for  constructing a polygonal  object.  stepData and  note parameters  are  described in  Item  R.1.1.
Triangulation  Calculation  Control.  If  note.wire==true,  then  the  method  creates  a  set  of  pointers  to 
mesh.wires polygons; if note.grid==true, then the method fills a set of pointers to mesh.grids triangulations 
(for  faces  and surfaces),  a  set  of  pointers  to  mesh.wires polygons  (for  edges) and a  set  of  pointers  to 

289



mesh.peakes apexes (for vertices).
iReg parameter may be equal to zero. This parameter is used to provide nested methods data on already 

processed objects.
In  Figure  R.1.2.1,  you  can  see  a  polygonal  solid  object  that  was  constructed  with  the  following 

parameters:  note.wire==false,  note.grid==true. This object contains triangulations, polygons and apexes. In 
Figure R.1.2.2, you can see a polygonal solid object that was constructed with the following parameters:  
note.wire==true, note.grid==false, the object contains only polygons.

  

Figure R.1.2.1. Figure R.1.2.2.

In Figure R.1.2.3, you can see a polygonal object of an assembly unit that was constructed with the 
following  parameters:  note.wire==false,  note.grid==true.  This  object  consists  of  an  assembly  unit  of 
polygonal objects that approximate the parts.

Figure R.1.2.3.

 The method is used to visualize objects of a geometric model. You can easily transform polygonal objects 
and quickly find an intersection with a straight line. It is a polygonal copy of geometric model object that is  

290



displayed on the screen, and the original object remains offscreen.

R.1.3. Adding a Polygonal Object

Virtual method for geometric model objects
bool
MbItem::AddYourMesh ( const MbStepData & stepData,
                                            const MbFormNote & note,
                                            MbMesh & mesh ) const
constructs and adds its own polygonal copy to received mesh polygonal object.

Input parameters of the method are:
• stepData are the data required to calculate approximation step,
• note is the method used to construct the polygonal object.

The output parameter of the method is mesh polygonal object.
In case of success, the method returns true.
The method is declared in item.h file and descendant header files MbItem
The  method  approximates  model  objects  by polygonal  copies  and  adds  them to  the  received  mesh 

original object. For an insertion, the method will create a polygonal copy of insertion content, transform it to  
a global coordinate system and then will add it to received mesh object. For an assembly unit, the method 
will create a polygonal copy of assembly unit content, transform it to a global coordinate system and then  
will add it to mesh original object.

By analogy with  CalculateMesh method, stepData parameter controls the density of polygonal object 
grid, and  note parameter defines how to construct the polygonal object.  stepData and  note parameters  are 
described in  Item  R.1.1. Triangulation Calculation Control. In contrast to the above method, this method 
creates a single polygon object for complex objects. In Figure R.1.3.1, you can see a polygonal object for the  
assembly unit shown in Figure R.1.2.3. This polygonal object was constructed using the considered method.

Figure R.1.3.1.

R.1.4. Constructing Polygons for an Object

Virtual method for three-dimensional geometric objects
void

291



MbSpaceItem::CalculateWire ( double sag,
                                                     MbMesh & mesh )
fills received mesh polygonal object with the set of polygons approximating the geometric object.

Input parameter of the method is:
• sag is the maximum allowable deviation from the original object in terms of deflection.

The output parameter of the method is mesh polygonal object.
The method is declared in space_item.h file and MbSpaceItem descendant header files.
The polygonal object is described in Item O.8.5. MbMesh Polygonal Object.  sag parameter  determines 

the maximum allowable distance between the object and the broken line that goes by the points of polygons.  
The method creates only a set of pointers to mesh.wires polygons (broken lines).

The method uses a single polygon to approximate a curve.  As to contours,  this  method uses several 
polygons, each contour approximates a corresponding segment of the contour. In Figure R.1.4.1, you can see 
a curve and its polygonal object consisting of one polygon.

Figure R.1.4.1.

In order to approximate a surface, the method uses a set of polygons that go through u lines, v lines and 
along a surface border. In Figure R.1.4.2, you can see a polygonal object of a surface that consists of several 
broken lines.

Figure R.1.4.2.

The method uses a set of broken lines to approximate a solid. These lines go inside a face along u lines 
and v lines of face surfaces. A set of broken lines is also used to approximate the curves at which solid edges  
are based. In Figure R.1.4.3 (right), you can see a polygon object for the solid.

292



Figure R.1.4.3.

For  objects  of  the  geometric  model,  the  method  works  exactly  as  CalculateMesh metod  if 
stepData.stepType==ist_SpaceStep, stepData.sag==sag, note.wire==true and note.seam==true.

R.1.5. Constructing Triangulation for a Face

Method
void
CalculateGrid ( const MbFace & face,
                            const MbStepData & stepData,
                            bool edgePoints,
                            MbGrid & grid,
                            bool dualSeams = true )
approximates a face using triangular and quadrangular plates.

Input parameters of the method are:
• face is the face itself,
• stepData are the data required to calculate approximation step,
• edgePoints is the flag indicating that spatial points will be used,
• dualSeams is the flag for processing seams.

grid triangulation is the output parameter of the method.
This method is declared in tri_face.h file.
stepData parameter  manages triangulation density, it contains data used to calculate the increment for  

moving along face surface. stepData parameter is described in Item R.1.1. Triangulation Calculation Control. 
For various values of stepData.stepType, various fields of grid triangulation are filled. If stepData.stepType 
contains ist_MipStep mask, then grid.params set is created. If stepData.stepType contains ist_CollisionStep 
or ist_ParamStep mask, then grid.params, grid.points and grid.normals sets are created. In all other cases, 
grid.params and grid.points sets are created.

In Figure R.1.5.1, you can see triangulation of a flat face with ist_SpaceStep mask.

293



Figure R.1.5.1.

In Figure R.1.5.2, you can see triangulation of a curved face with ist_SpaceStep mask.

Figure R.1.5.2.

When polygonal  objects  are  constructed,  the  method is  used by  CalculateMesh and  AddYourMesh 
methods if note.grid==true.

R.1.6. Constructing Triangulation for a Solid

Method
void
CalculateGrid ( const MbSolid & solid,
                            const MbStepData & stepData,
                            RPArray<MbGrid> & grids )
constructs a set of triangulations for the faces of a solid.

Input parameters of the method are:
• solid is the solid,
• stepData are the data needed to calculate approximation increment.

grids set is the output parameter of the method.
This method does not return any value.

294



The method is declared in mip_solid_area_volume.h file.
The method approximates faces of  solid solid using  grids triangulations. When the method is called, 

meshs set should be empty. When the method is called,  grids set should be empty. Each ith face of  solid 
solid has its own grids[i] object.

stepData parameter controls grid density of the polygonal object, it contains all data required to calculate  
parameter increment when moving along curves and surfaces of the solids. stepData parameter is described 
in Item R.1.1. Triangulation Calculation Control.

R.1.7. Constructing Polygonal Objects for a Set of Solids

Method
void
CalculateGrid ( const RPArray<MbSolid> & solids,
                            const MbStepData & stepData,
                            RPArray<MbMesh> & meshs )
constructs a set of polygonal objects for a set of solids.

Input parameters of the method are:
• solids is the set of solids,
• stepData are the data needed to calculate the approximation increment.

meshs set is the output parameter of the method.
This method does not return any value.
The method is declared in  mip_solid_area_volume.h file.

The method approximates solids solids using meshs polygonal objects. When the method is called, meshs 
set should be empty. Each solids[i] solid has a corresponding newly constructed meshs[i] object.

stepData parameter controls grid density of the polygonal object, it contains all data required to calculate  
parameter increment when moving along curves and surfaces of the solids. stepData parameter is described 
in Item R.1.1. Triangulation Calculation Control.

295



R.2. CONSTRUCTING FLAT PROJECTIONS

C3D geometric kernel uses a wireframe model to construct a flat projection of the modeled object. We'll  
create a wireframe model from a boundary representation of the geometric model by taking edges and adding 
their outlines instead of faces. The outlines go through faces and divide them into parts that are visible or 
invisible from part observation point. Flat projections are more informative if all edges and outlines invisible  
from the observation point are hidden in wireframe model.

R.2.1. Data Required to Construct Flat Projections

MbLump structure shown in Figure R.2.1.1 is  used as method input  to construct  flat  projections to  
present the solids.

Figure R.2.1.1.

MbLump structure is declared in lump.h file.  MbLump contains a pointer to solid solid, a matrix that 
transforms  the  solid  from  from local  coordinate  system,  component and  identifier solid  identification 
parameters.

MbProjectionsObjects class shown in Figure R.2.1.2 is used by the method to construct flat projections 
in order to display supplementary objects.

Figure R.2.1.2.

MbProjectionsObjects class  is  declared  in  map_create.h  file.  MbProjectionsObjects contains  the 
following data:

• TPointer<PArray<MbAnnCurves> >      annCurves are annotation curves,
• TPointer<RPArray<MbSimbolthThreadView> > annotations are subsidiary objects,
• TPointer<RPArray<MbSymbol> >         symbolObjects are designations,
• TPointer<RPArray<MbSpacePoints> >  pointsData are points,
• TPointer<RPArray<MbSpaceCurves> > curvesData are curves.

MbVEFVestiges structure shown in Figure R.2.1.3 is used to pass flat projection construction results.



Figure R.2.1.3.

MbVEFVestiges structure  is  declared  in  map_vestiges.h  file.  MbVEFVestiges structure  contains 
grouped  flat  projections  of  object  elements.  Each  element  in  projection  group  contains  a  constructed  
projection,  a  pointer  to  projection  parent  object,  data  on  projection  visibility  and  other  data  on  this  
projection. MbVEFVestiges structure contains the following groups:

• PArray<MbVertexVestige>        vertexVestiges is a set of vertex projections.
• PArray<MbEdgeVestige>           edgeVestiges is a set of edge projections,
• PArray<MbFaceVestige>            faceVestiges is a set of face projections,
• PArray<MbAnnotationVestige> annotateVestiges is a set of annotation object projections,
• PArray<MbSymbolVestige>       symbolVestiges is a set of symbol projections,
• PArray<MbVertexVestige>        pointVestiges is a set of point projections,
• PArray<MbEdgeVestige>           curveVestiges is a set of curve projections.

R.2.2. Constructing Model Flat Projection 

Method
void
GetVestiges ( const MbPlacement3D &         place,
                       double                                        znear,
                       const RPArray<MbLump> &   lumps,
                       const MbProjectionsObjects & objects,
                       MbVEFVestiges  &                  result,   
                       bool                                           invisible,
                       VERSION                                 version )
constructs flat projection for a set of solids and other objects.

Input parameters of the method are:
• place is the projection plane,
• znear is observation point parameter,
• lumps are the projected solids in local coordinate systems,  
• objects are all other projected objects,
• invisible is a flag meaning that invisible lines are constructed,
• version  is  the  version  of  the  constructed  object,  it  is  the  latest  version  of 

Math::DefaultMathVersion().
The output parameter of the method is result, it is the structure containing projection data.
The method does not return any value.
The method is declared in map_create.h file.
XY plane of place local coordinate system is the projection plane.
znear parameter defines image type. If  znear=0, then a parallel projection of the objects is constructed. 

297



lumps parameter (Figure R.2.1.1) contains the solids and matrices of their transformation from the local 
coordinate  system.  objects parameter  (Figure R.2.1.2) contains auxiliary objects  required to finalize  the 
projection:  auxiliary points,  curves,  designations and annotation objects.   invisible parameter determines 
whether it is required to construct invisible lines. In some cases, the method works considerably faster if the 
construction of invisible lines is canceled.

In Figure R.2.2.1, you can see a solid, its projection lines to a plane parallel to the screen are shown in  
Figure R.2.2.2. In Figure R.2.2.3, you can see only visible lines of the projection of the solid shown in  
Figure R.2.2.1.

  

Figure R.2.2.1.     Figure R.2.2.2.   Figure R.2.2.3.

The last parameter of the method is used to support previous construction versions.
Method

void
VisualLinesMapping ( const MbPlacement3D &       place,
                                       double                                     znear,             
                                       const RPArray<MbLump> & lumps,            
                                       MbVEFVestiges   &               result,           
                                       bool                          invisible = true )
constructs a planar projection for a set of solids. It is similar to  GetVestiges method, the difference is the 
absence of objects auxilliary objects.

R.2.3. Constructing Polygonal Projections of Solids

Method
void

298



HiddenLinesMapping ( const RPArray<MbLump> &      lumps,
                                         const MbPlacement3D &             place,
                                         double                                           znear,
                                         double                                           sag,
                                         PArray<MbPolygon3DSolid> & visibleEdges,
                                         PArray<MbPolygon3DSolid> & hiddenEdges,
                                         PArray<MbPolygon3DSolid> & visibleTangs,
                                         PArray<MbPolygon3DSolid> & hiddenTangs )
constructs a polygonal projection for a set of solids to the specified plane.

Input parameters of the method are:
• lumps are the projected solids in local coordinate systems,  
• place is the projection plane,
• znear is observation point parameter,
• sag is the maximum allowable deviation by deflection.

Output parameters of the method are as follows:
• visibleEdges are polygons of visible non-smooth edges,
• hiddenEdges are polygons of invisible non-smooth edges,
• visibleTangs are polygons of visible smooth edges,
• hiddenTangs are polygons of invisible smooth edges.

The method does not return any value.
The method is declared in map_create.h file.
XY plane of place local coordinate system is the projection plane.
lumps parameter (Figure R.2.1.1) contains the solids and matrices of their transformation from the local 

coordinate system. znear parameter defines image type. If znear=0, then a parallel projection of the objects is 
constructed. MbPolygon3DSolid class contains component number and a pointer to the polygon consisting 
of  a  set  of  points  that  should be connected in  series  to  approximate  edge projection on the plane.  sag 
parameter  determines  approximation  accuracy.  visibleEdges  and  hiddenEdges  polygons  are  visible  and 
invisible  polygonal  projections  of  non-smooth  edges  to  XY plane  of  place local  coordinate  system. 
visibleTangs and hiddenTangs polygons are visible and invisible polygonal projections of smooth edges to 
XY plane in place local coordinate system.

Method
void
VisualLinesMapping ( const RPArray<MbLump> &      lumps,
                                    const MbPlacement3D &             place,
                                       double                                           znear,
                                       double                                           sag,
                                       PArray<MbPolygon3DSolid> & visibleEdges,
                                       PArray<MbPolygon3DSolid> & visibleTangs )
constructs only a visible polygonal projection of the set  of  solids to the specified plane. The method is  
similar  to  HiddenLinesMapping mehod,  but  it  constructs  visible  projections  only.  In  some  cases, 
VisualLinesMapping works significantly faster than HiddenLinesMapping.

R.2.4. Constructing a Triangulation Outline

Method
void
CalculateBoundsSltFast ( const MbGrid &                        grid,
                                             const MbMatrix3D &                matrix,
                                             bool                                            perspective,
                                             RPArray<MbFloatPoint3D> & points )
constructs a triangulation outline.

Input parameters of the method are:
• grid is solid face triangulation,

299



• matrix is a matrix that defines a gaze vector,
• perspective is perspective representation flag.

The output parameter of the method is
points, it is a set of pointers to the points from grid.points triangulation.

The method does not return any value.
The method is declared in map_create.h file.
This method is intended to construct polygonal outlines and visualize triangulation silhouette.

300



R.3. CALCULATION OF INERTIAL CHARACTERISTICS

C3D geometric kernel calculates modeled object surface area, volume, center of gravity and moments of 
inertia. In the general case, numerical integration is used. Volume integration is reduced to modeled object 
surface integration using Gauss`s theorem. Surface integration uses triangulation of a two-dimensional area 
of definition of surface parameters. When the above characteristics of the model are calculated, it is possible 
to include ready-to-use data for particular model elements.

R.3.1. Inertial Characteristics of a Model

InertiaProperties class shown in Figure R.3.1.1 is used to set inertial characteristics of a model.

Figure R.3.1.1.

InertiaProperties class  is  declared  in  mip_solid_mass_inertia.h  file.  InertiaProperties contains  the 
following model data:

• double area is surface area,
• double volume is volume,
• double mass is mass,
• double inertia[3] are static moments in the original coordinate system,
• double initial[3][3] are moments of inertia in the original coordinate system,
• double moments[3][3] are moments of inertia in the central coordinate system,
• double general[3] are principal central moments of inertia,
• MbCartPoint3D center is the center of gravity,
• MbVector3D direction[3] are the vectors of direction of principal axes of inertia.

When InertiaProperties class is initialized all data take zero values and gravity center coordinates are 
equal to NOT_INITIAL_DBL. initial moments of inertia are calculated in the coordinate system wherein the 
model is described.  moments moments of inertia are calculated in the coordinate system with the origin 
located in  center point and its coordinate axes coincide with the axes of the original coordinate system 
wherein  the  model  is  described.  general inertia  moments  are  calculated  in  principle  center  coordinate 
system,  its  origin is  center point,  and coordinate axes are  calculated and they coincide with the  model 
principal axes of inertia. Products of inertia in principle coordinate system are equal to zero.

direction vectors  define  the  direction  of  principal  axes  of  inertia.  If  all  general[i]  i=1,2,3  principle 
moments of inertia differ,  then all  direction[i]  i=1,2,3 vectors are non-zero. If all  principle moments of 
inertia in general[i] i=1,2,3 are the same, then all direction[i] i=1,2,3 vectors are equal to zero, and any three 



mutually orthogonal vectors may be used as principle directions. If two of three principal moments of inertia  
are  equal,  for  example,  general[j]==general[k],  then  two  of  the  three  vectors  are  equal  to  zero: 
direction[j]=direction[k]=0, and non-zero  direction[i] vector defines the direction of the principal inertia 
axis, its moment for other axes is different from the others, any two vectors that are mutually orthogonal and  
orthogonal to non-zero direction[i] vector can be used as any two principle directions.

SolidMIAttire and  AssemblyMIAttire  classes shown in Figure R.3.1.2 and Figure R.3.1.3 provide an 
opportunity  to  use  ready-to-use  data  for  separate  model  elements.  These  classes  are  declared  in  
mip_solid_mass_inertia.h file.

 

Figure R.3.1.2.                    Figure R.3.1.3.

SolidMIAttire class contains the following data:
• constMbSolid & solid is the solid,
• double density is the density or specific gravity of unit area,
• MbMatrix3D matrix is the matrix used to transform the solid to the nearest assembly system,
• InertiaProperties * properties are specified inertial characteristics of the solid, they can be equal to 

zero or they may be defined not completely,
• bool ready is the flag showing that it is not required to calculate the characteristics.

AssemblyMIAttire class contains the following data:
• RPArray<AssemblyMIAttire> assemblies is a set of assembly units at the next level,
• RPArray<SolidMIAttire> solids are the solids of the assembly unit,
• MbMatrix3D matrix is the matrix used to transform the solid into the nearest assembly system,
• InertiaProperties * properties are specified inertial characteristics of the assembly solid, they can 

be equal to zero or they may be defined not completely,
• bool ready is the flag showing that it is not required to calculate the characteristics.

If  instances  of  SolidMIAttire and  AssemblyMIAttire classes  contain  non-zero  properties and 
ready==true then inertial  characteristics of the corresponding object  won't  be calculated,  and calculation 
result will contain data from properties.

If  instances  of  SolidMIAttire and  AssemblyMIAttire classes  contain  non-zero  properties and 
ready==false,  then  calculation  result  will  contain  data  from  properties data  that  are  not  equal  to 
NULL_EPSILON  or  NOT_INITIAL_DBL.  Data  that  in  properties are  equal  to  NULL_EPSILON  or 
NOT_INITIAL_DBL will be calculated. Considered classes permit to mix calculated and assigned data.

R.3.2. Inertial Solid Characteristics 

Function
void
MassInertiaProperties ( const MbSolid * solid,
                                          double density,
                                          double deviateAngle,
                                          InertiaProperties & properties,
                                          IfProgressIndicator * progress = 0 )
calculates solid surface area, volume, mass, center of gravity and moments of inertia.

303



Method input parameters are:
• solid is the solid,
• density is density or specific gravity per unit area,
• deviateAngle is a parameter used to control calculation accuracy.

Output parameters of the method are:
• properties are calculated inertial characteristics,
• progress is calculation progress indicator.

This method returns no value.
The method is declared in mip_solid_mass_inertia.h file.
For  solid closed solid,  density parameter determines solid density. For a non-closed solid,  solid density 

parameter determines specific gravity of solid unit area. In the general case, numerical integration is applied,  
definition area of face surface parameters are triangulated. Parametric area of faces is triangulated using 
CalculateGrid method  described  in  item  R.1.4.  Constructing  Polygons  for  an  Object if 
stepData.stepType=ist_MipStep and  stepData.angle=deviateAngle.  deviateAngle parameter determines the 
maximum  allowable  angle  between  the  normals  of  adjacent  triangles  and  quadrangles  of  surface 
triangulation. deviateAngle parameter controls calculation accuracy. Calculation time depends on this value. 
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian). Please note that for 
complex models small values of deviateAngle result in long calculation time.

properties inertial  characteristics  are  described  in  Item  R.1.4.  Constructing Polygons  for  an  Object. 
progress  parameter  provides  information  about  calculation  progress;  it  may  be  used  to  terminate  the 
calculation.

R.3.3. Inertial Characteristics for a Set of Solids

Function
void
MassInertiaProperties ( const RPArray<MbSolid> & solids,
                                          const SArray<double> & densities,
                                          const SArray<MbMatrix3D> & matricies,
                                          const PArray<InertiaProperties> & mpSolids,
                                          double deviateAngle,
                                          InertiaProperties & properties,
                                          IfProgressIndicator * progress = 0 )
calculates surface area, volume, mass, center of gravity and moments of inertia for a set of solids.

Method input parameters are:
• solids is a set of solids,
• densities is a set of densities or specific gravities per unit area,
• matricies is the set of matrices used to transform solids into a common coordinate system,
• mpSolids is a set of available characteristics of solids (it may contain zeros),
• deviateAngle is a parameter used to control calculation accuracy.

Output parameters of the method are:
• properties are calculated inertial characteristics,
• progress is calculation progress indicator.

This method returns no value.
The method is declared in mip_solid_mass_inertia.h file.
densities, matricies, and mpSolids should contain a number of elements equal to the number of solids in 

solids set. The second parameter determines solid density for a closed solid or specific gravity of unit area 
for a non-closed solid. matricies parameter contains a set of matrices used to convert solids into a coordinate  
system where the calculation should to be used.  mpSolids  parameter  contains  the  characteristics  of  the 
corresponding solids that should be used instead of calculated characteristics. Considered method can be  
used  to  calculate  inertial  characteristics  of  assembly unit;  inertial  characteristics  of  unit  elements  were  
previously calculated in local coordinate systems.

In  the  general  case,  numerical  integration  is  applied,  definition  area  of  face  surface  parameters  are 

304



triangulated. Parametric area of faces is triangulated using CalculateGrid method described in item R.1.4.
Constructing Polygons for an Object if  stepData.stepType=ist_MipStep and  stepData.angle=deviateAngle. 
deviateAngle parameter determines the maximum allowable angle between the normals of adjacent triangles 
and quadrangles of surface triangulation. deviateAngle parameter controls calculation accuracy. Calculation 
time depends on this value. deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 
(radian). Please note that for complex models small values of deviateAngle result in long calculation time.

properties inertial  characteristics  are  described  in  Item  R.3.1.  Inertial  Characteristics  of  a  Model. 
progress  parameter  provides  information  about  calculation  progress;  it  may  be  used  to  terminate  the 
calculation.

R.3.4. Inertial Characteristics of a Model

Function
void
MassInertiaProperties ( const AssemblyMIAttire & assembly,
                                          double deviateAngle,
                                          InertiaProperties & properties,
                                          IfProgressIndicator * progress = 0 )
calculates surface area, volume, mass, center of gravity and moments of inertia for the model described as  
assembly unit.

Method input parameters are:
• assembly is an assembly unit that may contain precalculated characteristics,
• deviateAngle is a parameter used to control calculation accuracy.

Output parameters of the method are:
• properties are calculated inertial characteristics,
• progress is calculation progress indicator.

This method returns no value.
The method is declared in mip_solid_mass_inertia.h file.
assembly parameter represents an analogue of the assembly unit containing other assembly units in local 

coordinate systems and solids with specified density in local coordinate systems. Elements of the assembly 
units may have precalculated inertial characteristics and corresponding control parameters. If an element has 
precalculated characteristics, then these characteristics are used in the total amount, thus reducing calculation 
time.

deviateAngle parameter  controls  calculation  accuracy.  Calculation  time  depends  on  this  value.  
deviateAngle parameter determines the maximum allowable angle between the normals of adjacent triangles 
and  quadrangles  of  surface  triangulation.  deviateAngle parameter  should  fall  within  0.01  (radian) 
<=deviateAngle<=0.35 (radian). Please note that for complex models small values of deviateAngle result in 
long calculation time.

properties inertial  characteristics  are  described  in  Item  R.3.1.  Inertial  Characteristics  of  a  Model  . 
progress  parameter  provides  information  about  calculation  progress;  it  may  be  used  to  terminate  the 
calculation.

R.3.5. Calculation of Surface Area

Method
double
CalculateArea ( const RPArray<MbFace> & faces,
                             double deviateAngle )
calculates the surface area for a set of faces.

Method input parameters are:
• faces is the set of faces,
• deviateAngle is a parameter used to control calculation accuracy.

305



This method returns the area of the specified set of faces.
The method is declared in mip_solid_mass_inertia.h file.
deviateAngle parameter  controls  the  accuracy of calculation.  Calculation time depends on this value. 

deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian). In the general case, 
numerical integration is applied, definition area of face surface parameters is triangulated. Parametric area of 
faces is triangulated using  CalculateGrid method described in Item  R.1.4. Constructing Polygons for an
Object if  stepData.stepType=ist_MipStep and  stepData.angle=deviateAngle.  deviateAngle parameter 
determines the maximum allowable angle between the normals of adjacent triangles and quadrangles of  
surface triangulation.

Method
double
CalculateArea ( const MbFace & face,
                            double deviateAngle )
calculates the surface area of a single face.

Method input parameters are:
• face is the face,
• deviateAngle is a parameter used to control calculation accuracy.

This method returns the area of the specified face.
This method is declared in tri_face.h file.
deviateAngle parameter  controls  the  accuracy of calculation.  Calculation time depends on this value. 

deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
Method

double
CalculateArea ( constMbSurface & surface,
                            double deviateAngle )
calculates surface area.

Method input parameters are:
• surface is the surface,
• deviateAngle is a parameter used to control calculation accuracy.

This method returns the area of the surface.
The method is declared in mip_solid_area_volume.h file.
deviateAngle parameter  controls  the  accuracy of calculation.  Calculation time depends on this value. 

deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
Method

double
CalculateAreaCentre ( const MbFace & face,
                                       double deviateAngle,
                                       bool byOuter,
                                       VERSION version,
                                       MbCartPoint3D & centre )
calculates face surface area and the center of gravity.

Method input parameters are:
• face is the face,
• deviateAngle is the parameter that controls calculation accuracy,
• byOuter is the parameter indicating that internal cutouts of the face should be ignored,
• version is the parameter that control calculation version.

Method output parameter: centre is the center of gravity of the face.
This method returns face area.
The method is declared in mip_solid_area_volume.h file.
deviateAngle parameter  controls  the  accuracy of calculation.  Calculation time depends on this value. 

deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
byOuter parameter permits to ignore the internal cutouts of the face in the calculations. If byOuter=true, then 
it is assumed that the face does not have internal cutouts. If byOuter=false, then standard calculation of the 
surface area and the center of gravity are executed for the face. version parameter permits to ensure support  
of previous calculation versions.

306



Method
double
CalculateAreaCentre ( const MbFaceShell & shell,
                                       double deviateAngle,
                                        MbCartPoint3D & centre )
calculates the surface area and the center of gravity for a set of faces.

Method input parameters are:
• shell is the set of faces,
• deviateAngle is a parameter used to control calculation accuracy.

Method output parameter: centre is the center of gravity of the set of faces.
This method returns the area of the specified set of faces.
The method is declared in mip_solid_area_volume.h file.
deviateAngle parameter  controls  the  accuracy of calculation.  Calculation time depends on this value. 

deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).

R.3.6. Calculation of Solid Volume 

Method
double
CalculateVolume ( const MbSolid & solid,
                                 double deviateAngle )
calculates solid volume.

Method input parameters are:
• solid is the solid,
• deviateAngle is a parameter used to control calculation accuracy.

This method returns the solid volume.
The method is declared in mip_solid_area_volume.h file.
deviateAngle parameter  controls  the  accuracy of calculation.  Calculation time depends on this value. 

deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).

307


	INTRODUCTION
	General Information
	Functionality
	Structure and Distinctive Features
	Theoretical Foundations
	Package
	Test Application
	Development in .NET Environment

	M.1. METHODS USED TO SOLIDS CONSTRUCTING
	M.1.1. Constructing an Elementary Solid
	M.1.2. Constructing an Elementary Solid by a Given Surface
	M.1.3. Constructing an Extrusion Solid
	M.1.4. Constructing a Revolution Solid
	M.1.5. Constructing a Swept Solid
	M.1.6. Constructing a Solid by Flat Sections
	M.1.7. Creating a Solid by a Specified Set of Faces

	М2. OPERATIONS ON SOLIDS
	M.2.1. Boolean Operation on Solids
	M.2.2. Boolean Operation on Non-Closed Solids
	M.2.3. Boolean Operation on Extrusion Solid
	M.2.4. Boolean Operation on Revolution Solid
	M.2.5. Boolean Operation on Swept Solid
	M.2.6. Boolean Operation with a Solid Constructed on Base of Flat Sections
	M.2.7. Cutting a Solid by a Surface
	M.2.8. Cutting a Solid by a Flat Contour
	M.2.9. Constructing a Symmetrical Solid
	M.2.10. Rounding-off Solid Edges
	M.2.11. Rounding-off Edges of the Solid Using Variable Radius
	M.2.12. Constructing a Solid with Edge Chamfers
	M.2.13. Constructing a Thin-Wall Solid
	M.2.14. Constructing a Thin-Wall Solid with Various Wall Thickness
	M.2.15. Constructing Solids by Thickening the Surface
	M.2.16. Constructing a Mirror Solid
	M.2.17. Boolean Operation on Solids and Set of Solids
	M.2.18. Merging a Set of Solids
	M.2.19. Divide a Solid to Disconnected Parts
	M.2.20. Separation of Disconnected Parts
	M.2.21. Splitting Solid Faces
	M.2.22. Constructing a Hole, Pocket or Slot in a Solid
	M.2.23. Constructing a Solid with an Enforcement Rib
	M.2.24. Sloping Solid Faces
	M.2.25. Multiplication of Solids

	O.1. ELEMENTARY OBJECTS
	O.1.1. MbVector3D Vector in Three-Dimensional Space
	O.1.2. MbCartPoint3D Radius Vector of Point in 3D Space
	O.1.3. MbHomogenius3D Homogenius Vector in Three-Dimensional Space
	O.1.4. MbPlacement3D Local Coordinate System
	O.1.5. MbMatrix3D Extended Matrix in Three-Dimensional Space
	O.1.6. MbCube Bounding Box in Three-Dimensional Space
	O.1.7. MbRect1D Univariate Dimension
	O.1.8. MbVector Vector in Two-Dimensional Space
	O.1.9. MbDirection Normalized Vector in Two-Dimensional Space
	O.1.10. MbCartPoint Point Radius Vector in Two-Dimensional Space
	O.1.11. MbHomogenius Homogenios Vector in Two-Dimensional Space
	O.1.12. MbPlacement Local Coordinate System
	O.1.13. MbMatrix Extended Matrix in Two-Dimensional Space
	O.1.14. MbRect Bounding Rectangle in Two-Dimensional Space

	O.2. GEOMETRICAL OBJECTS
	O.2.1. MbRefItem Reference Counter
	O.2.2. MbSpaceItem Three-Dimensional Geometrical Object
	O.2.3. MbTopItem Topological Object
	O.2.4. MbPlaneItem Two-Dimensional Geometrical Object

	O.3. TWO-DIMENSIONAL CURVES
	O.3.1. MbCurve Two-Dimensional Curve
	O.3.2. MbLine Two-Dimensional Straight Line
	O.3.3. MbLineSegment Two-Dimensional Straight Line Segment
	O.3.4. MbArc Two-Dimensional Elliptical Arc
	O.3.5. MbPolyline Two-Dimensional Polyline
	O.3.6. MbNurbs Two-Dimensional NURВS-Curve
	O.3.7. MbHermit Two-Dimensional Hermite Curve
	O.3.8. MbBezier Two-Dimensional Bezier Composite Curve
	O.3.9. MbCubicSpline Two-Dimensional Cubic Spline
	O.3.10. MbTrimmedCurve Two-Dimensional Truncated Curve
	O.3.11. MbReparamCurve Two-Dimensional Reparameterized Curve
	O.3.12. MbOffsetCurve Two-Dimensional Equidistant Curve
	O.3.13. MbCharCurve Two-Dimensional Character Curve
	O.3.14. MbCosinusoid Two-Dimensional Cosine Wave
	O.3.15. MbPointCurve Two-Dimensional Curve-Point
	O.3.16. MbProjCurve Two-Dimensional Projection Curve
	O.3.17. MbContour Two-Dimensional Contour

	O.4. CURVES
	O.4.1. MbCurve3D Curve
	O.4.2. MbLine3D Straight Line
	O.4.3. MbLineSegment3D Straight Line Segment
	O.4.4. MbArc3D Elliptical Arc
	O.4.5. MbPolyline3D Polyline
	O.4.6. MbNurbs3D NURВS-Curve
	O.4.7. MbHermit3D Hermite Curve
	O.4.8. MbBezier3D Bezier Composite Curve
	O.4.9. MbCubicSpline3D Cubic Spline
	O.4.10. MbTrimmedCurve3D Trimmed Curve
	O.4.11. MbReparamCurve3D Reparametrized Curve
	O.4.12. MbOffsetCurve3D Equidistant Curve
	O.4.13. MbCharacterCurve3D Character Curve
	O.4.14. MbConeSpiral Conical Spiral
	O.4.15. MbCurveSpiral Variable Radius Spiral
	O.4.16. MbCrookedSpiral Spiral with Curved Planar Axis
	O.4.17. MbBridgeCurve3D Joining Curve
	O.4.18. MbContour3D Contour
	O.4.19. MbPlaneCurve Plane Curve
	O.4.20. MbSurfaceCurve Curve on Surface
	O.4.21. MbSilhouetteCurve Silhouette Curve
	O.4.22. MbContourOnSurface Contour on Surface
	O.4.23. MbContourOnPlane Contour on Plane
	O.4.24. MbSurfaceIntersectionCurve Surface Intersection Curve

	O.5. SURFACES
	O.5.1. MbSurface Surface
	O.5.2. MbPlane Plane
	O.5.3. MbCylinderSurface Cylindrical Surface
	O.5.4. MbConeSurface Conical Surface
	O.5.5. MbSphereSurface Spherical Surface
	O.5.6. MbTorusSurface Toroidal Surface
	O.5.7. MbExtrusionSurface Extrusion Surface
	O.5.8. MbRevolutionSurface Revolution Surface
	O.5.9. MbExpansionSurface Motion Surface
	O.5.10. MbSpiralSurface Spiral Surface
	O.5.11. MbEvolutionSurface Swept Surface
	O.5.12. MbExactionSurface Swept Surface with Adaptation
	O.5.13. MbSectorSurface Sectorial Surface
	O.5.14. MbRuledSurface Ruled Surface
	O.5.15. MbLoftedSurface Surface Based on a Family of Curves
	O.5.16. MbElevationSurface Surface Based on a Family of Curves and a Guiding Curve
	O.5.17. MbCornerSurface Surface Based on Three Curves
	O.5.18. MbCoverSurface Coons Surface
	O.5.19. MbCoonsPatchSurface Coons Surface
	O.5.20. MbMeshSurface Surface Based on a Network of Curves
	O.5.21. MbJoinSurface Joint Surface
	O.5.22. MbSplineSurface NURBS Surface
	O.5.23. MbOffsetSurface Equidistant Surface
	O.5.24. MbChamferSurface Chamfer Surface
	O.5.25. MbFilletSurface Fillet Surface
	O.5.26. MbChannelSurface Fillet Surface
	O.5.27. MbCurveBoundedSurface Surface with Arbitrary Borders

	O.6. SPECIAL OBJECTS
	O.6.1. MbFunction Function
	O.6.2. MbConstFunction Constant Function
	O.6.3. MbLineFunction Linear Function
	O.6.4. MbCubicFunction Cubic Hermite Function
	O.6.5. MbCubicSplineFunction Cubic Spline Function
	O.6.6. MbCharacterFunction Character Function
	O.6.7. MbMultiline Multiline
	O.6.8. MbContourWithBreaks Two-Dimensional Contour with Breaks
	O.6.9. MbRegion Region
	O.6.10. MbLegend Auxiliary Geometric Object
	O.6.11. MbMarker Marker
	O.6.12. MbThread Thread Graphic Symbol
	O.6.13. MbPointsSymbol Symbol
	O.6.14. MbRough Surface Finish Symbol
	O.6.15. MbLeader Leader Line Symbol

	O.7. TOPOLOGICAL OBJECTS
	O.7.1. MbTopologyItem Topological Object
	O.7.2. MbFace Face
	O.7.3. MbEdge Edge
	O.7.4. MbVertex Vertex
	O.7.5. MbCurveEdge Face Edge
	O.7.6. MbLoop Face Cycle
	O.7.7. MbOrientedEdge Oriented Face Edge
	O.7.8. MbFaceShell Set of Faces
	O.7.9. Copying a Set of Faces
	O.7.10. Naming of Faces, Edges and Vertices

	O.8. OBJECTS OF GEOMETRIC MODEL
	O.8.1. MbItem Geometric Model Object
	O.8.2. MbSolid Solid Body
	O.8.3. MbWireFrame Wireframe
	O.8.4 MbPointFrame Point Frame
	O.8.5. MbMesh Polygonal Object
	O.8.6 MbInstance Insertion
	O.8.7. MbAssembly Assembly Unit
	O.8.8. MbSpaceInstance Three-Dimensional Object Insertion
	O.8.9. MbPlaneInstance Two-Dimensional Object Insertion
	O.8.10. MbAssistingItem Auxiliary Object

	R.1. CONSTRUCTING TRIANGULATION
	R.1.1. Triangulation Calculation Control
	R.1.2. Constructing a Polygonal Object
	R.1.3. Adding a Polygonal Object
	R.1.4. Constructing Polygons for an Object
	R.1.5. Constructing Triangulation for a Face
	R.1.6. Constructing Triangulation for a Solid
	R.1.7. Constructing Polygonal Objects for a Set of Solids

	R.2. CONSTRUCTING FLAT PROJECTIONS
	R.2.1. Data Required to Construct Flat Projections
	R.2.2. Constructing Model Flat Projection
	R.2.3. Constructing Polygonal Projections of Solids
	R.2.4. Constructing a Triangulation Outline

	R.3. CALCULATION OF INERTIAL CHARACTERISTICS
	R.3.1. Inertial Characteristics of a Model
	R.3.2. Inertial Solid Characteristics
	R.3.3. Inertial Characteristics for a Set of Solids
	R.3.4. Inertial Characteristics of a Model
	R.3.5. Calculation of Surface Area
	R.3.6. Calculation of Solid Volume


