
Chapter 2 
 
 

SURFACES 
 
 

urfaces are the main descriptive elements of a modeled object’s shape. In 
general, a surface has a complex boundary, described by two-dimensional curves 
in the parametric space of the surface. This boundary can be constructed for any 

surface having a domain of a simple form—for example, rectangular. This chapter 
deals with methods of surface construction. Surfaces can be constructed on a set of 
points, or they can be based on curves and on other surfaces. 
 

2.1. Surfaces 
 

Let a Cartesian rectangular coordinate system with a fixed orthonormal basis be 
chosen in a three-dimensional Euclidean space. 

A surface is a vector function 
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of two scalar parameters, u and v, taking their values in a two-dimensional connected 
domain Ω. We will assume that the coordinates r1(u,v), r2(u,v), r3(u,v) of a point on the 
surface r(u,v) are single-valued continuous functions of parameters u and v. This is a 
parametric description of the surface. A description of a surface by an equation 
satisfied by the points of the surface is not invariant under coordinate transformations; 
that is, transition to a different coordinate system changes the surface equation. 

The surface is a continuous mapping of a two-dimensional connected domain Ω 
into three-dimensional space. The area Ω will be described in a two-dimensional 
Cartesian coordinate system. In the special case, the area Ω is a rectangle and the 
parameters of the surface take their values in the range υmin≤υ≤υmax, vmin≤v≤vmax. In 
general, the area Ω is described by two-dimensional curves. 

The surface is called periodic with respect to the first parameter if there is a 
pu>0, such that r(u±kpu,v)=r(u,v), where k is integer. The surface is called periodic 
with respect to the second parameter, if there is a pv>0, such that r(u,v±kpv)=r(u,v), 
where k is integer. To avoid ambiguity, the domain of a periodic surface must lie 
within one period for each parameter. A periodic surface with a rectangular parameter 
domain Ω is called cyclic closed with respect to the first parameter, if pu=umax–umin; 
and cyclic closed with respect to the second parameter, if pv=vmax–vmin. 

S 
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We introduce the following notation for the partial derivatives with respect to the 
parameters of the surface. 
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The subscript index in the notation corresponds to the number of the parameter with 
respect to which the differentiation is performed. Next, we assume that the coordinate 
functions r1(u,v), r2(u,v), r3(u,v) have continuous derivatives in each parameter of any 
order we need. 

The point of the surface is called regular if at this point the lengths of the partial 
derivatives with respect to both parameters of the surface are non-zero, and partial 
derivatives of the surface are not parallel. Otherwise the point of the surface is called 
singular. 

It is possible to construct a surface at a regular point on the vectors r1 and r2. A 
plane passing through the point of the surface parallel to the vectors r1 and r2 at this 
point is called a tangent plane to the surface. 

If we fix one of the parameters, and change the other one within some limits, we 
get a curve that lies on the surface. Such curves are called coordinate curves of the 
surface. The curves along which only the u parameter changes are called u-lines, and 
the curves along which only the v parameter changes are called v-lines. Derivatives r1 
and r2 of the surface are the vectors tangent to the corresponding coordinate curves. 

In order to construct an arbitrary curve on the surface one can introduce the 
dependence of the surface parameters u and v on some common parameter—for 
example, u=u(t) and v=v(t). Surface parameters u and v are the coordinates of the point 
on the surface in some chosen Cartesian coordinate system. We use lowercase letters in 
bold italics to denote the column coordinates of the points and column components of 
the vectors in two-dimensional space; for example, 
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The term two-dimensional curve denotes the vector function  

 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
tv

tu
tr                                                 (2.1.2) 

 
of scalar parameter t that takes values in the range of tmin≤t≤tmax. Let coordinates u(t), 
v(t) of a point on a plane curve be single-valued continuous functions of parameter t. 
Similar to three-dimensional curves, plane curves can be cyclic and cyclic closed 
curves.  

Two-dimensional curves can be constructed on a set of points, on the basis of 
other plane curves, or using analytic functions. We will use the methods of three-
dimensional curve construction to construct two-dimensional curves—with the only 
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difference being that instead of using three-dimensional objects we will use two-
dimensional points, vectors, and base curves. 

A surface curve is described by the relation  
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The derivative of the surface curve  
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lies in a tangent plane constructed at the given point. 

The metric properties of the surface are expressed by the metric properties of the 
curves on it. Let us investigate the metric properties of a surface in the neighborhood of 
a point specified by parameters u and v. Let us move from the given point along some 
surface curve to an infinitely close point specified by the parameters u+du, v+dv, and 
calculate the arc length. Up to the term linearly dependent on infinitesimals, the arc 
length is  
 

ds = |r1du + r2dv|. 
 
The squared length of an infinitesimal arc is 
 

ds2 = r1
.r1du2 + 2r1

.r2dudv + r2
.r2dv2. 

 
We introduce the notation 
 

g11 = r1 . r1,         g12 = g21 = r1 . r2 = r2 . r1,         g22 = r2 
. r2.         (2.1.4) 

 
Then the length of an infinitesimal arc of the surface curve will be given by the 
formula  
 

ds2 = g11du2 + 2g12dudv + g22dv2. 
 
The expression on the right-hand side is a quadratic form of differentials du and dv, 
and is called the first quadratic form of the surface. The quantities g11(u,v), g12(u,v), 
g21(u,v), and g22(u,v) determine the metric properties of the surface and are called the 
coefficients of the first quadratic form of the surface. 

Using the first quadratic form we can calculate the arc length of the surface 
curve. Suppose we are given with a segment of a surface curve u=u(t), v=v(t), t1≤t≤t2. 
In the limit, the sum of infinitesimal arc lengths ds gives the length of the 
corresponding segment of the curve 
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The first quadratic form of the surface allows calculation of angles between the 

surface curves. Suppose there are two surface curves passing through a common point 
defined by parameters u and v. Denote by du and dv the differentials of the surface 
parameters corresponding to the infinitesimal shift along the first surface curve, and by 
δu and δv the differentials of the surface parameters corresponding to an infinitesimal 
shift along the second surface curve. These infinitesimal shifts are determined by the 
vectors  
 

dr = r1du + r2dv,  δr = r1δu + r2δv. 
 
Let us find the cosine of the angle ϕ between the surface curves as a dot product of 
vectors tangent to the curves, divided by the product of the lengths of these vectors.  
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This expression allows us to find the angle between the coordinate u-curve and v-curve 
at the given point of the surface, if we assume that du≠0, dv=0, δu=0, δv≠0 at this 
point; then 
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If g12=0, then the coordinate curves at the given point are orthogonal. 

The first quadratic form is also used for calculation of a surface area. Consider an 
infinitesimal curvilinear parallelogram with sides du and dv at the point specified by 
parameters u and v on the surface. The parallelogram area in the first approximation 
equals 
 

dS = |r1du×r2dv| = |r1×r2|dudv.  
 
Represent the square of the vector length r1×r2 in the following way: 
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Thus, the area of the infinitesimal curvilinear parallelogram in the first approximation 
is given by the formula 
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Then the area of the surface with the parameters taking values in a two-dimensional 
connected region Ω is calculated using the integral  
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The geometrical properties of the surface, which can be determined by the first 

quadratic form, are called the internal geometry of the surface. 
At a regular point, the normal to the surface is determined by the cross product 

r1×r2. Since vectors r1 and r2 lie on the tangent to the surface plane, their cross product 
is orthogonal to the tangent plane. Dividing the vector r1×r2 by its length, we obtain the 
formula for the unit normal to the surface at the given point: 
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Consider some surface curve defined by the functions u=u(t), v=v(t). Calculate 

the increment that the radius vector of the surface curve gets with an infinitesimal 
increment of its parameter dt by a precision of up to the second order of dt: 
 

2
2

2

2
1

dt
dt

d
dt

dt

d rrr +=Δ . 

 
Find the projection of Δr on the normal to the surface at the given point. The first 
derivative of the curve is orthogonal to the normal to the surface, so the second 
derivative of the curve plays a major part in the projection Δr on the normal: 
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The projection of the second derivative of the curve on the normal to the surface 
characterizes the curvature of the surface—only the surface, not the curve. Indeed, if 
the curve is constructed on the surface, then no matter how it is curved, the projection 
of the vector Δr on the normal to the plane will be equal to zero. The dot product of Δr 
and the surface normal yields  
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We introduce the notation  
 

b11 = r11 . m,          b12 = b21 = r12 . m = r21 . m,         b22 = r22 . m.         (2.1.5) 
 
From this we have the expression for the major part of the deviation of the surface 
curve from the tangent plane: 
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The expression in parentheses on the right side of this equation is a quadratic form of 
the differentials du and dv. It is called the second quadratic form of the surface. The 
terms b11(u,v), b12(u,v), b21(u,v), and b22(u,v) determine the curvature of the surface; 
they are called the coefficients of the second quadratic form of the surface. 

The coefficients of the second quadratic form can be expressed in a different way. 
We can use the fact that the normal vector m is always orthogonal to the vectors r1 and 
r2. Let us differentiate the relations m.r1=0 and m.r2=0 with respect to u and v, yielding 
 

b11 = –m1 . r1,      b12 = –m2 . r1,     b21 = –m1 . r2,     b22 = –m2 . r2, 
 

where 
u∂

∂
=

mm1  and 
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mm2  are partial derivatives of the normal to the surface with 

respect to the parameters of the surface. The dot product of the differentials 
dr=r1du+r2dv, dm=m1du+m2dv results in the equation 
 

– dr . dm = b11du2 + 2b12du dv + b22dv2.                        (2.1.6) 
 

Vector m has unit length. We can differentiate the relation m.m=1 with respect to 
the parameters of the surface, and get as a result  
 

m1 . m = 0,             m2 . m = 0. 
 
From these equations it follows that the derivatives of the normal to the surface with 
respect to the parameters lie in the tangent plane of the surface; i.e., m1 and m2 can be 
represented as expansions in vectors r1 and r2. The Weingarten derivative formulas 
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express the partial derivatives of the normal to the surface in terms of the derivatives of 
the surface and the coefficients of the first and the second quadratic forms. The 
coefficients of the Weingarten derivative formulas can be determined from the system 
of equations obtained by the dot product of the equations m1=a11r1+a12r2 and 
m2=a21r1+a22r2 by r1 and r2. 
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Let us establish the relation between the curvature of the surface curve and the 
orientation of its tangent vector in the osculating plane. Consider the equation  
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The second derivative of the surface curve is  
 

ntr
k

dt

ds

dt

sd

dt

d
2

2

2

2

2

⎟
⎠

⎞
⎜
⎝

⎛+= , 

 
where t – tangent vector of the surface curve, n – principal normal of the surface curve, 
k – curvature of the surface curve, s – arc length of the surface curve. The tangent 
vector t of the curve lies on the tangent to the surface plane and is orthogonal to the 
normal to the surface m: therefore the following equation holds:  
 

ds2kn . m = b11du2 + 2b12dudv + b22dv2. 
 
Substituting the squared differential of the arc length of the curve expressed in the first 
quadratic form, we obtain 
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The geometric meaning of the last relation can be clearer if we consider the 

normal section of the surface—the intersection curve of the surface and the plane 
passing through the normal to the surface, and also through the tangent to the surface 
curve. 

 
Fig. 2.1.1. 

 
Fig. 2.1.1 shows a surface curve and corresponding normal section of a surface; the 
normal section passes through the given point on the curve. The first part of the 
equation (2.1.7) depends only on the location of the given point and the direction of the 
surface curve determined by the ratio of du to dv. Therefore, any surface curve passing 
through the given point and having a tangent in common with the given normal section 
will have the same value kn.m, despite the fact that it has a different curvature. The 
normal section lies on the surface as well as on the section plane, so its principal 
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normal lies on the section plane as well, and hence |n.m|=1 for the normal section. 
Thus the normal section has the minimum curvature among all surface curves passing 
through the given point and having a tangent in common with it. This curvature is 
equal to  
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The curvature of a normal section is called normal curvature of the surface at the 
given point and for the given direction. 

The angle between the normal to the surface and the principal normal of the 
surface curve is equal to the angle between the normal section plane and the tangent 
plane of the curve. If the curvature of the normal section is known, then one can 
determine the curvature of the surface curve tangent to the normal section, provided 
that the angle between the normal to the surface and the principal normal of the curve 
is known. 

This fact is stated in the Meusnier theorem formulated as: The curvature radius 
ρ=1/k at a given point on the surface is equal to the product of the curvature radius 
ρm=1/μ of the corresponding normal section at this point by the cosine of the angle 
between the normal to the surface and the principal normal of the curve: 
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If the normal section is tangent to the coordinate u–curve, then dv=0 and 
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where μu denotes the normal curvature of the surface in the u–direction. Similarly, the 
normal curvature of the surface μv in the v–direction is  
 

μv

b

g
= 22

22
. 

 
It is possible to construct many normal sections at a given point of a surface. 

These sections will differ in directions determined by the ratio of du to dv. The 
direction of a normal section with zero curvature is called the asymptotic direction at 
the given point. There are no more than two asymptotic directions at each point on the 
surface, except for those cases when all of the coefficients of the second quadratic form 
at the given point vanish. 

We have considered the projection of the curvature vector kn of the surface curve 
onto the normal to the surface m. We will now consider the remaining part of the 
curvature vector—its projection on the tangent plane. It is equal to  
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h = kn – m (kn . m). 
 
The length of the vector h is called the geodesic curvature of the surface curve. The 
geodesic curvature of the normal section is equal to zero. If we construct the projection 
orthogonal to the tangent plane of the surface curve, then the curvature of this 
projection at the given point will be equal to the length of the vector h. The normal 
curvature is characteristic of the surface and the geodesic curvature is characteristic of 
the curve on it. 

The principal curvatures of the surface determine the direction characterized by 
the relation between the vectors dr and dm. From equations (2.1.6) and (2.1.8) it 
follows that the following equality holds for the vectors dr and dm  
 

μ (dr . dr) = – (dr . dm),                                       (2.1.9) 
 
The curvature of the normal section at a given point depends on the relative directions 
of the vectors dr and dm. Let us find such direction of movement along the surface on 
which the vectors dr and dm are collinear—i.e., where the equality dm=–λdr holds. 
From equations (2.1.8) and (2.1.9) it follows that the following equality must hold for 
collinear vectors dr and dm: 
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Thus, the desired direction can be determined with the help of a system of linear 
algebraic equations for du and dv 
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This system is homogeneous and has a nontrivial solution if the determinant of its 
matrix is zero: 
 

( ) ( ) ( )g g g b g b g b g b b b11 22 12
2 2
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Expanding the determinant, we arrive at a quadratic equation with respect to λ, which 
in general provides us with two roots: λ1 and λ2. Substituting each root into any 
equation of (2.1.10) we obtain two directions on the surface, determined by the ratios 
du1/dv1 and du2/dv2. 

The directions of motion on the surface for which vectors dr and dm are collinear 
are called the principal directions of the surface. The normal sections at a given point 
of the surface with their tangents directed along the principal directions are called the 
principal sections, and their curvatures are called the principal curvatures at the 
given point of the surface. It is simple to get the sum and the product of the principal 
curvatures from (2.1.11): 
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The half-sum of the principal curvatures is called the mean curvature of the surface at 
the given point, and the product of the principal curvatures is called the Gauss 
curvature of the surface at the given point.  

Denote the tangent vectors of the normal sections along the principal directions by 
t1 and t2. Let us show that the principal directions of the surface are mutually 
orthogonal. Express the main directions in terms of the derivatives of the radius vector 
 

t1 = r1 du1 + r2 dv1, 
t2 = r1 du2 + r2 dv2. 

 
Their dot product is  
 

t1 . t2 =  [du1   dv1] . G . [du2   dv2] T,                          (2.1.13) 
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We can show that it is generally zero. For this we write down the system of two 
equations (2.1.10) for the first principal direction, then multiply the first equation by 
du2 and the second equation by dv2. Next we add the first and the second equations and 
get the following result:  
 

[du2 dv2] . (B –λ1G) . [du1  dv1]T  =  0, 
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Similarly, we obtain the second equation by interchanging the principal directions, 
 

[du1 dv1] . (B – λ2 G) . [du2  dv2] T =  0. 
 
Subtract one of the last two equations from the other and will yield the equation: 
 

[du1  dv1] . ((λ2 – λ1) G) . [du2  dv2] T =  0, 
 
which implies that the principal directions are orthogonal at λ1≠λ2. If the principal 
curvatures of the surface are identical then any two orthogonal directions can be 
selected as the principals (this situation occurs on the sphere and on the plane). The 
point where λ2=λ1 is called the umbilical point. 

Since the principal directions are orthogonal in general, then the derivatives of the 
radius vector of the surface and its normals in any direction can be expanded into unit 
vectors t1 and t2 of the principal directions 
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ds

dr
= t1 cosϕ + t2 sinϕ,            

ds

dm
= – λ1 t1 cosϕ – λ2 t2 sinϕ, 

 
where the angle ϕ is measured from the first to the second principal direction in the 
tangent plane. Taking into account the last equations, the curvature of the normal 
section in an arbitrary direction is determined by the relation  
 

μ = –
d

ds

d

ds

r m
⋅  = λ1cos2ϕ + λ2sin2ϕ.                         (2.1.14) 

 
Formula (2.1.14) is called the Euler formula. It expresses the curvature of an arbitrary 
normal section at the point in terms of the principal curvatures and the angle between 
the normal section and the first principal direction. From this equation, it can be seen 
that the principal curvatures of the surface, λ1 and λ2, are the maximum and minimum 
curvatures, respectively. 

The Gauss curvature of the surface (2.1.12) can be used to determine the surface 
behavior at an arbitrary point. Since the denominator in (2.1.12) is greater than zero, 
the sign of the Gauss curvature depends on the sign of the numerator—i.e., on the sign 
of the determinant of the matrix B. If |B|>0, then the point is called elliptical. The 
behavior of the surface at the elliptical point is shown in Fig. 2.1.2. If |B|<0, the point 
is called hyperbolic. The behavior of the surface at the hyperbolic point is shown in 
Fig. 2.1.3.    

                     
Fig. 2.1.2.                                              Fig. 2.1.3. 

 
When we move from the considered point in any direction, the surface bends either in 
the direction of the normal or in the opposite direction, depending on the signs of λ1 
and λ2. According to (2.1.14), there exist normal sections for which the following 
equation holds  
 

μ1cos2ϕ + μ2sin2ϕ =  0. 
 
Tangents to the normal sections at angles  
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lie in the tangent plane symmetrically with respect to the principal directions, and 
determine asymptotic direction at the given point. If at the given point |B|=0, then this 
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point is called parabolic. The behavior of the surface at the parabolic point is shown in 
Fig. 2.1.4. 

 
Fig. 2.1.4. 

 
When λ1=λ2=0, each direction is asymptotic. Otherwise, the principal direction is the 
asymptotic direction with zero curvature. The corresponding normal section at such 
point has a rectifying point. 

If for each point of the surface curve the tangent is parallel to one of the principal 
directions at this point of the surface, the surface curve is called the curvature line. 
The coordinate curves are often the curvature lines. Let u-lines and v-lines be curvature 
lines. In this case the following equalities hold at each point of the surface:  
 

g12 = g21 = b12 = b21 = 0,                                   (2.1.15) 
 
due to the orthogonality of the principal directions. The opposite proposition is also 
true: If at every point of the surface the equations (2.1.15) hold, then the coordinate 
curves are the curvature lines. 
 

2.2. Analytic Surfaces 
 

The surface is called an analytic surface if its coordinates in the local coordinate 
system can be described by analytic functions without using points, vectors, curves, or 
other surfaces. 

Local coordinate systems are used for analytic surfaces in which the surfaces are 
expressed in canonical form. Construct a local Cartesian coordinate system with the 
origin at p and basis vectors ix, iy, iz. A surface with coordinates x(u,v), y(u,v), z(u,v) in 
the local coordinate system is described by the vector function 
 

r(u,v) = p +  x(u,v) ix + y(u,v) iy + z(u,v) iz.                       (2.2.1) 
 
Let pi be the coordinate of the origin p of the local coordinate system, xi be the 
components of the basis vector ix, yi be the components of the basis vector iy, and zi be 
the components of the basis vector iz, i=1,2,3. Then the analytic surface is the function  
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The coordinates of a point on the surface (2.2.1) equal 
 

ri(u,v) = pi + x(u,v) xi + y(u,v) yi + z(u,v) zi. 
 
Upon changing the position or orientation of an analytic surface described in this way, 
the coordinates of the origin of the local coordinate system and its basis vectors 
change, but the analytical functions of the surface remain unchanged, preserving the 
canonical form. Let us consider examples of analytic surfaces. 

A conical surface is described by the vector function  
 

r(u,v) = p + (r + hv tgγ)(cosu ix + sinu iy) + hv iz,    
u∈[0, 2π],       v∈[vmin, vmax], 

 
where r – one of the base radii of the cone, h – the cone length, γ – the angle between 
the generator and the axis of the cone. We place the origin of the local coordinate 
system at the center of one of the cone bases and direct the basis vector iz along the axis 
of the surface. The cone surface is cyclic with respect to the first parameter and 
truncated with respect to the second parameter. A circular cone is shown in Fig. 2.2.1. 
If the angle γ is set equal to zero, we obtain a cylindrical surface. 

 
Fig. 2.2.1. 

 
We describe the surface of a torus by the vector function  

 
r(u,v) = p + (R + r cosv) cosu ix + (R + r cosv) sinu iy + r sinv iz,    

u∈[0, 2π],       v∈[vmin, vmax], 
 
where r is the radius of the torus tube, and R is the radius of the tube axis. The origin of 
the local coordinate system is placed at the torus center, while the basis vector iz is 
directed along the torus axis; see Fig. 2.2.2. Scalar functions x(u,v)=(R+r.cosv).cosu, 
y(u,v)=(R+r.cosv).cosu, z(u,v)=r.sinv are related by the equation 
 

( ) 22
2

22 r=z+Ry+x − . 
 
When r≤R, the torus surface is cyclic closed with respect to both parameters and has 
the shape of a donut, then vmin=–π and vmax=π. If r>R, then to prevent surface self-
intersections we restrict the domain of the second parameter. We set vmin=–π+v0, 
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vmax=π–v0, where v0=arccos(R/r), if –|r|<R<r. When 0<R<r, the torus surface has the 
shape of an apple; see Fig. 2.2.3.  

   
                    Fig. 2.2.2.                                                   Fig. 2.2.3. 

 
If R=0 the torus surface becomes a sphere of radius r. If –|r|<R<0 the torus surface has 
the shape of a lemon. If the tube axis radius does not exceed the tube radius, then the 
torus surface has singular points at v=±(π–arccos(R/r)) because the derivative of the 
surface with respect to the first parameter vanishes at these points.  

An ellipsoid is described by the vector function  
 

r(u,v) = p + a cosv cosu ix + b cosv sinu iy + c sinv iz,    
u∈[0, 2π],       v∈[–π/2, π/2], 

 
where a, b, and c are semi-axes of the ellipsoid. Similar to the sphere, the ellipsoid is a 
cyclic surface with respect to the first parameter. The scalar functions 
x(u,v)=a.cosv.cosu, y(u,v)=b.cosv.sinu, and z(u,v)=c.sinv of the ellipsoid are related by 
the equation  
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A one-sheet hyperboloid is described by the vector function  

 
r(u,v) = p + a chv cosu ix + b chv sinu iy + c shv iz,  

u∈[0, 2π],       v∈[vmin, vmax], 
 
where a and b are real semi-axes of the hyperboloid, and c is its imaginary semi-axis. 
The real semi-axes are equal to the distances from the point p to the points of 
intersection of the surface with the axes ix and iy of the local coordinate system. The 
one-sheet hyperboloid is a cyclic surface with respect to the first parameter. The scalar 
functions x(u,v)=a.chv.cosu, y(u,v)=b.chv.sinu, and z(u,v)=c.shv of the hyperboloid are 
related by the equation  
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We describe a two-sheet hyperboloid by the vector function  
 

r(u,v) = p + a shv cosu ix + b shv sinu iy + c chv iz,  
 u∈[0, 2π],       v∈[0, vmax], 

 
where a and b are the imaginary semi-axes of the hyperboloid, and c is its real semi-
axis. The real semi-axis is equal to the distance from the point p to the points of 
intersection of the surface with the axis iz of the local coordinate system. The two-sheet 
hyperboloid is a cyclic surface with respect to the first parameter. The scalar functions 
x(u,v)=a.shv.cosu, y(u,v)=b.shv.sinu, and z(u,v)=c.chv of the hyperboloid are related by 
the equation  
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We describe an elliptical paraboloid by the vector function  

 
r(u,v) = p + a v cosu ix + b v sinu iy + v2 iz,  

u∈[0, 2π],      v∈[0, vmax], 
 
where a and b are the semi-axes of the paraboloid. An elliptical paraboloid is a cyclic 
surface with respect to the first parameter. The scalar functions x(u,v)=a.v.cosu, 
y(u,v)=b.v.sinu, and z(u,v)=v2 of the paraboloid are related by the equation  
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We describe a hyperbolic paraboloid by the vector function  

 
r(u,v) = p + a u ix + b v iy + (u2 – v2) iz,  

u∈[umin, umax],      v∈[vmin, vmax], 
 
where a and b are the semi-axes of the paraboloid. The scalar functions x(u,v)=a.u, 
y(u,v)=b.v,  and z(u,v)=u2–v2 of the hyperbolic paraboloid are related by the equation  
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The hyperbolic paraboloid is not a cyclic surface. 
 


